首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Differential inhibitors of DNA polymerases alpha and delta   总被引:9,自引:0,他引:9  
DNA polymerases alpha and delta from bone marrow are similar in many respects, the major known difference being the exonuclease activity of delta. Differential inhibitors of alpha and delta have been sought to assist in their functional and physical separation. Butylphenyl deoxyguanosine triphosphate is one. It effectively inhibits alpha at less than 1 microM concentration, whereas more than 100 microM is required to similarly inhibit delta. Another is the monoclonal antibody, SJK 132-20, which neutralizes the polymerase activity of alpha but not delta. These differential inhibitors further define alpha and delta as separate categories of eukaryotic DNA polymerase and promise to facilitate the study of both.  相似文献   

2.
The p-n-butylphenyl- and p-n-butylanilino- substituted analogs of dGTP and dATP, respectively, were tested as inhibitors of purified human placental DNA polymerases alpha and delta. It was observed that DNA polymerase alpha activity was potently inhibited by these analogs with I0.5 values as low as the nanomolar range, whereas DNA polymerase delta activity was poorly inhibited, with I0.5 values of ca. 100 micromolar. These results argue for a distinct identity of these two enzymes, and demonstrate the usefulness of these analogs as probes of DNA polymerase structures. In addition, these analogs provide a rapid method for the discrimination of the two enzyme activities and a means for the selective assay of DNA polymerase delta. Aphidicolin inhibited both DNA polymerases.  相似文献   

3.
Most, although not all, samples of commercial calf thymus DNA were strongly inhibitory to DNA polymerase alpha; the inhibition made the DNA useless as a template for this enzyme. In a pre-assembled DNA polymerase assay mixture (minus enzyme but including activated DNA) the inhibition tended to diminish with time but at a rate that was not predictable, and some inhibition usually persisted. It was concluded that the inhibition was the result of contamination of the DNA by a heparin-like material on the basis of the following: 1) the inhibition could be reversed by treatment of the DNA with heparinase; 2) both the endogenous inhibitory effect of calf thymus DNA as well as the inhibitory effect of heparin on DNA polymerase alpha are reversed by protamine (which is known to prevent the antithrombin activity of heparin); 3) both the endogenous inhibition and inhibition by heparin are also reversed by ampholyte (which also prevents the antithrombin activity of heparin); and 4) both the endogenous and the heparin-induced inhibitory effects display the same spectrum of activity against mammalian DNA polymerases, i.e. both DNA polymerases alpha and delta are extremely sensitive whereas, DNA polymerases beta and gamma are resistant. The last result also suggests the use of heparin as a specific inhibitor of purified mammalian DNA polymerases alpha and delta, similar to the use of aphidicolin.  相似文献   

4.
The activities of DNA polymerases alpha and delta, in extracts from Chinese hamster ovary (CHO) cells, were assayed in order to determine whether these polymerases are regulated during the cell cycle. An exponential population of CHO cells was separated into enriched populations of G-1, S, and G-2/M phases of cell cycle by centrifugal elutriation. Total cell homogenates from each population were assayed for DNA polymerase activity by measuring labeled nucleotide incorporation into the exogenous templates oligo(dT).poly(dA) and DNase I activated calf thymus DNA. In these experiments, specific DNA polymerase inhibitors were added to assays of the cellular extracts to allow for the independent measurement of activities of DNA polymerases alpha and delta. Comparisons of total DNA polymerase activity from cellular extracts, sampled from each portion of the cell cycle, demonstrated no significant change with respect to the concentration of total protein. However, results indicate that the activity of DNA polymerase delta increases with respect to that of DNA polymerase alpha in the G-2/M portion of the cell cycle. This difference in relative activities of DNA polymerases alpha and delta suggests a coordinate regulation of a specific species of DNA polymerase during the cell cycle.  相似文献   

5.
The relationship between DNA polymerases alpha and delta are evaluated immunologically by monoclonal antibody specifically against DNA polymerase alpha and murine polyclonal antiserum against calf thymus DNA polymerase delta. DNA polymerases alpha and delta are found to be immunologically distinct. The structural relationship between the proliferating cell nuclear antigen (PCNA)-dependent calf DNA polymerase delta and DNA polymerase alpha from human and calf was analyzed by two-dimensional tryptic peptide mapping of the catalytic polypeptides. The results demonstrate that the catalytic polypeptides of the PCNA-dependent calf polymerase delta and DNA polymerase alpha are distinct, unrelated, and do not share any common structural determinants. The immunological and structural relationship between a recently identified PCNA-independent form of DNA polymerase delta from HeLa cells was also assessed. This PCNA-independent human polymerase delta was found to be immunologically unrelated to human polymerase alpha but to share some immunological and structural determinants with the PCNA-dependent calf thymus polymerase delta.  相似文献   

6.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64-66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39-57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase alpha and delta as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase alpha and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase alpha holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789-4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase alpha is blocked with the DNA polymerase alpha specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase delta can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

7.
8.
Mammalian DNA polymerases alpha and delta: current status in DNA replication   总被引:20,自引:0,他引:20  
A G So  K M Downey 《Biochemistry》1988,27(13):4591-4595
  相似文献   

9.
10.
DNA synthesis by two eukaryotic DNA polymerases, alpha and delta, was studied using a single-strand M13 DNA template primed at a unique site. In the presence of low amounts of either DNA polymerase alpha or delta, DNA synthesis was limited and short DNA strands of approximately 100 bases were produced. Addition of replication factors RF-A, PCNA and RF-C, which were previously shown to be required for SV40 DNA replication in vitro, differentially stimulated the activity of both DNA polymerases. RF-A and RF-C independently stimulated DNA polymerase alpha activity 4- to 6-fold, yielding relatively short DNA strands (less than 1 kb) and PCNA had no effect. In contrast, polymerase delta activity was stimulated co-operatively by PCNA, RF-A and RF-C approximately 25- to 30-fold, yielding relatively long DNA strands (up to 4 kb). Neither RF-C nor RF-A appear to correspond to known polymerase stimulatory factors. RF-A was previously shown to be required for initiation of DNA replication at the SV40 origin. Results presented here suggest that it also functions during elongation. The differential effects of these three replication factors on DNA polymerases alpha and delta is consistent with the model that the polymerases function at the replication fork on the lagging and leading strand templates respectively. We further suggest that co-ordinated synthesis of these strands requires dynamic protein-protein interactions between these replication factors and the two DNA polymerases.  相似文献   

11.
We have demonstrated that calf thymus DNA polymerases alpha and delta are capable of highly processive DNA synthesis. Processivity values between 300 and 2000 nucleotides were observed when poly(dA)-oligo(dT) or singly primed single-stranded circular bacteriophage M13 DNA at pH 6.0 and 1 mM magnesium chloride was used. These conditions do not correlate with conditions, pH 7.0 and 5 mM magnesium chloride, that support the maximum synthetic rate. Lowering the pH and magnesium concentration lowers the Km value of the reaction with respect to primer terminus concentration. Furthermore, under these same conditions, both polymerases become insensitive to dissociation from the template as a result of encountering the 5' ends of primers. Overall, these results suggest that the affinity of the polymerases for the primer termini is higher throughout the polymerization reaction of pH and magnesium concentrations are lowered from those favoring maximum synthetic rate. Experiments with short primer templates, however, indicate that this higher affinity does not cause the DNA polymerase to remain stably bound after synthesizing up to the end of the template.  相似文献   

12.
Diede SJ  Gottschling DE 《Cell》1999,99(7):723-733
To better understand the requirements for telomerase-mediated telomere addition in vivo, we developed an assay in S. cerevisiae that creates a chromosome end immediately adjacent to a short telomeric DNA tract. The de novo end acts as a telomere: it is protected from degradation in a CDC13-dependent manner, telomeric sequences are added efficiently, and addition occurs at a faster rate in mutant strains that have long telomeres. Telomere addition was detected in M phase arrested cells, which permitted us to determine that the essential DNA polymerases alpha and delta and DNA primase were required. This indicates that telomeric DNA synthesis by telomerase is tightly coregulated with the production of the opposite strand. Such coordination prevents telomerase from generating excessively long single-stranded tails, which may be deleterious to chromosome stability in S. cerevisiae.  相似文献   

13.
14.
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.  相似文献   

15.
alpha-like and beta-like DNA polymerases have previously been isolated from a halophilic archaebacterium Halobacterium halobium. In this report, we show that the alpha-like DNA polymerase has an associated 3' to 5'-exonuclease activity which is specific for single-stranded DNA, sensitive to both aphidicolin and N-ethylmaleimide and dependent on high salt concentrations like the polymerase activity. As this DNA polymerase has been shown to contain a primase activity, it may be considered as the equivalent to both eukaryotic DNA polymerases alpha and delta. As shown by glycerol-gradient centrifugation and electrophoresis under denaturing conditions, the beta-like polymerase would appear to have a monomeric structure and comprise of a single 65-kDa polypeptide. This DNA polymerase has both 3' to 5'-exonuclease and 5' to 3'-exonuclease activities which, contrary to polymerase activity, are inhibited by high salt concentrations.  相似文献   

16.
Evans Blue, an anionic dye which has been found to inhibit the replication of human immunodeficiency virus, proved also inhibitory to the DNA polymerases alpha and beta. The mode of inhibition was competitive with respect to the template X primer, and noncompetitive with respect to the deoxynucleoside triphosphate substrates. The inhibitory effect of Evans Blue on DNA polymerases is discussed in relation to that of suramin.  相似文献   

17.
The ontogeny of DNA polymerase activity in the neonatal rat heart was studied. The DNA polymerase activities in rat heart extracts were identified as DNA polymerase alpha and DNA polymerase delta activities by their purification and characterization, by the use of a specific inhibitor (BuAdATP), and by a specific monoclonal antibody against DNA polymerase alpha. Using these inhibitors, it was shown that the two activities declined in parallel during the maturation and terminal differentiation of the heart.  相似文献   

18.
The interactions of azidothymidine triphosphate, the metabolically active form of the anti-AIDS drug azidothymidine (zidovudine), with the cellular DNA polymerases alpha, delta, and epsilon, as well as with the RNA primer-forming enzyme DNA primase were studied in vitro. DNA polymerase alpha was shown to incorporate azidothymidine monophosphate into a growing polynucleotide chain. This occurred 2000-fold slower than the incorporation of natural dTTP. Despite the ability of polymerase alpha to use azidothymidine triphosphate as an alternate substrate, this compound was only marginally inhibitory to the enzyme (Ki greater than 1 mM). Furthermore, the DNA primase activity associated with DNA polymerase alpha was barely inhibited by azidothymidine triphosphate (Ki greater than 1 mM). Inhibition was more pronounced for DNA polymerases delta and epsilon. The type of inhibition was competitive with respect to dTTP, with Ki values of 250 and 320 microM, respectively. No incorporation of azidothymidine monophosphate was detectable with these two DNA polymerases because their associated 3'- to 5'-exonuclease activities degraded primer molecules prior to any measurable elongation. Template-primer systems with a preformed 3'-azidothymidine-containing primer terminus inhibited the three replicative polymerases rather potently. DNA polymerase alpha was inhibited with a Ki of 150 nM and polymerases delta and epsilon with Ki values of 25 and 20 nM, respectively. The type of inhibition was competitive with respect to the unmodified substrate poly(dA).oligo(dT) for all DNA polymerases tested. Performed 3'-azidothymidine-containing primers hybridized to poly(dA) were rather resistant to degradation by the 3'- to 5'-exonuclease of DNA polymerases epsilon and more susceptible to the analogous activity that copurified with DNA polymerase delta. It is proposed that the repair of 3'-azidothymidine-containing primers might become rate-limiting for the process of DNA replication in cells that have been treated with azidothymidine triphosphate.  相似文献   

19.
C V Rao 《Life sciences》1977,20(12):2013-2022
Pretreatment of membranes for 1 hr at 4° with up to 0.1% Triton X-100 (TX-100) and sodium desoxycholate (SDC), resulted in a greater loss of [3H] prostaglandin (PG)F2α binding compared to E1 binding. Lubrol WX (LWX) tended to cause a greater loss of [3H]PGF2α than E1 binding. However, the differential loss was not as marked as with TX-100 or SDC. Triton X-305 was relatively ineffective, but loss of [3H]PGE1 binding was greater than for PGF2α. Increasing concentrations of dimethylsulfoxide (DMSO) progressively inhibited PGF2α binding without affecting PGE1 binding. The detergent, but not DMSO, induced losses of membrane PG binding were due to solubilization of the receptors. Greater amounts of membrane protein and phospholipids were solubilized at detergent (TX-100 and SDC) concentrations that solubilized 100% of PGE1 receptors compared to 100% solubilization of F2α receptors. Neither the duration of preincubation nor the amount of membrane protein chosen were responsible for differential PGE1 and F2α receptor losses. These differential membrane PG receptor losses raise the possibility of differences in PGE1 and F2α receptors association with the membrane structure.  相似文献   

20.
DNA polymerase alpha, delta and epsilon can be isolated simultaneously from calf thymus. DNA polymerase delta was purified to apparent homogeneity by a four-column procedure including DEAE-Sephacel, phenyl-Sepharose, phosphocellulose, and hydroxylapatite, yielding two polypeptides of 125 and 48 kDa, respectively. On hydroxylapatite DNA polymerase delta can completely be separated from DNA polymerase epsilon. By KCl DNA polymerase delta is eluted first, while addition of potassium phosphate elutes DNA polymerase epsilon. DNA polymerases delta and epsilon could be distinguished from DNA polymerase alpha by their (i) resistance to the monoclonal antibody SJK 132-20, (ii) relative resistance to N2-[p-(n-butyl)phenyl]-2-deoxyguanosine triphosphate and 2-[p-(n-butyl)anilino]-2-deoxyadenosine triphosphate, (iii) presence of a 3'----5' exonuclease, (iv) polypeptide composition, (v) template requirements, (vi) processivities on the homopolymer poly(dA)/oligo(dT12-18), and (vii) lack of primase. The following differences of DNA polymerase delta to DNA polymerase epsilon were evident: (i) the independence of DNA polymerase epsilon to proliferating cell nuclear antigen for processivity, (ii) utilization of deoxy- and ribonucleotide primers, (iii) template requirements in the absence of proliferating cell nuclear antigen, (iv) mode of elution from hydroxylapatite, and (v) sensitivity to d2TTP and to dimethyl sulfoxide. Both enzymes contain a 3'----5' exonuclease, but are devoid of endonuclease, RNase H, DNA helicase, DNA dependent ATPase, DNA primase, and poly(ADP-ribose) polymerase. DNA polymerase delta is 100-150 fold dependent on proliferating cell nuclear antigen for activity and processivity on poly(dA)/oligo(dT12-18) at base ratios between 1:1 to 100:1. The activity of DNA polymerase delta requires an acidic pH of 6.5 and is also found on poly(dT)/oligo(dA12-18) and on poly(dT)/oligo(A12-18) but not on 10 other templates tested. All three DNA polymerases can be classified according to the revised nomenclature for eukaryotic DNA polymerases (Burgers, P.M. J., Bambara, R. A., Campbell, J. L., Chang, L. M. S., Downey, K. M., Hübscher, U., Lee, M. Y. W. T., Linn, S. M., So, A. G., and Spadari, S. (1990) Eur. J. Biochem. 191, 617-618).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号