首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotine, one of the most widespread drugs of abuse, has long been shown to impact areas of the brain involved in addiction and reward. Recent research, however, has begun to explore the positive effects that nicotine may have on learning and memory. The mechanisms by which nicotine interacts with areas of cognitive function are relatively unknown. Therefore, this paper is part of an ongoing study to evaluate regional effects of nicotine enhancement of cognitive function. Nicotine-induced changes in the levels of three neurotransmitters, dopamine (DA), serotonin (5-HT), norepinepherine (NE), their metabolites, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and their precursor, L-DOPA, were evaluated in the ventral and dorsal hippocampus (VH and DH), prefrontal and medial temporal cortex (PFC and MTC), and the ventral tegmental area (VTA) using in vivo microdialysis in awake, freely moving, male Sprague-Dawley rats. The animals were treated with acute nicotine (0.5 mg/kg, s.c.) halfway through the 300-min experimental period. The reuptake blockers, desipramine (100 microM) and fluoxetine (30 microM), were given to increase the levels of NE and 5-HT so that they could be detected. Overall, a nicotine-induced DA increase was found in some areas, and this increase was potentiated by desipramine and fluoxetine. The two DA metabolites, HVA and DOPAC, increased in all the areas throughout the experiments, both with and without the inhibitors, indicating a rapid metabolism of the released DA. The increase in these metabolites was greater than the increase in DA. 5-HT was increased in the DH, MTC, and VTA in the presence of fluoxetine; its metabolite, 5-HIAA, was increased in the presence and absence of fluoxetine. Except in the VTA, NE levels increased to a similar extent with desipramine and fluoxetine. Overall, nicotine appeared to increase the release and turnover of these three neurotransmitters, which was indicated by significant increases in their metabolites. Furthermore, DA, and especially HVA and DOPAC, increased for the 150 min following nicotine administration; 5-HT and NE changes were shorter in duration. As gas chromatography experiments showed that nicotine levels in the brain decreased by 75% after 150 min, this may indicate that DA is more susceptible to lower levels of nicotine than 5-HT or NE. In conclusion, acute nicotine administration caused alterations in the levels of DA, 5-HT, and NE, and in the metabolism of DA and 5-HT, in brain areas that are involved in cognitive processes.  相似文献   

2.
The effect of castration on the levels of brain monoamines and their metabolites has been investigated in rats which became or did not become muricidal following long-term isolation. Fourteen brain areas were explored: olfactory bulbs (OB), olfactory tubercles (OT), septum (Se), striatum (Sr), amygdala (A), thalamus (Th), hypothalamus (Hy), hippocampus (Hi), superior colliculus (SC), inferior colliculus (IC), raphe (Ra), pons-medulla (PM), frontal cortex (FC), temporal cortex (TC) and parietal cortex (PC). Except in the raphe of non muricidal rats and in the striatum of muricidal animals, all other areas examined demonstrate some changes of monoamines neurotransmitter or their metabolites after castration. The strongest changes, always increases, were found in the thalamus. In several brain areas, the changes occurring after castration, differ quantitatively and qualitatively in muricidal and non-muricidal rats.Special issue dedicated to Dr. Claude Baxter.Prof. P. Mandel passed away on October 6th, 1992.  相似文献   

3.
We investigated the effects of vitamin E deficiency on the monoamine metabolism in the rat brain. Male Wistar rats fed on the vitamin E deficient diet for 24 weeks were analyzed. At 28 weeks, they showed a reduced growth rate (52% of reduction), muscle atrophy, a motor weakness of hind limbs and disturbance of gait. The concentrations of monoamines, their precursors and metabolites in the brain were simultaneously determined using high performance liquid chromatography (HPLC) coupled with a coulometric detection with electrode array system. In addition, tryptophan hydroxylase activity was measured. The dopamine (p = 0.009) and serotonin (p = 0.04) levels in the brain stem of vitamin E deficients rats were significantly lower than in the controls, whereas their precursors tyrosine (p = 0.0009) and tryptophan (p = 0.0065) levels in the brain stem were significantly higher than in the controls. Moreover, tryptophan hydroxylase activity (p = 0.0005) in the brain stem of vitamin E deficient brains was significantly lower than in the controls. All statistical comparisons were done using non-parametric tests (Mann-Whitney U test). These results suggest that vitamin E deficiency may play a role in the disturbance of monoamine metabolism in rat brain.  相似文献   

4.
The present study demonstrates that catecholamine responsiveness in Yersinia enterocolitica, a bacterial pathogen whose infectious spectrum is principally limited to the gut, is limited to norepinephrine and dopamine, and not epinephrine; this behavior contrasts with observations for two pathogens with a wider extra-gastrointestinal spectrum, Escherichia coli O157:H7 and Salmonella enterica, which respond to all three catecholamines. Epinephrine showed lower potency than norepinephrine and dopamine in inducing growth of E. coli and S. enterica, and was a potent antagonist of norepinephrine and dopamine growth responsiveness in Y. enterocolitica. Given that only norepinephrine and dopamine and not epinephrine-containing neurons are found with the enteric nervous system, the results suggest that certain of the more exclusive enteric pathogens may have developed response systems preferentially for those neuroendocrine hormones that are produced by the enteric nervous system as host-derived signals by which to sense the environment and initiate pathogenic processes.  相似文献   

5.
The catecholamines (50 M dopamine, 50 M norepinephrine and 100 M epinephrine) and phenylethylamine (200 M) were found to stimulate ethylene production in potato suspension cultures. When 100 M amino-oxyacetic acid was added together with epinephrine, ethylene release returned to control levels. The endogenous 1-aminocyclopropane-1-carboxylic acid levels were increased in parallel with the release of ethylene, suggesting that the observed effect probably occurs via regulation of aCC synthase. Our results suggest that there is a link between these naturally occurring monoamines and ethylene in plants.Abbreviations AOA amino-oxyacetic acid - ACC 1-aminocyclopropane-1-carboxylic acid - DA dopamine - NE norepinephrine - E epinephrine - CA catecholamines - PEA phenylethylamine  相似文献   

6.
The objective of this study was to determine the levels of catecholamines and their relationship to beef quality in Nguni steers fed on Acacia karroo leaves. A total of 30 19-month-old steers were randomly assigned to A. karroo leaves (AK), sunflower cake (SF) and the control with no supplement (CN) diets. The AK and SF diets provided the steers with an additional 150 g of protein per day for 60 days. Catecholamine levels were determined from urine samples collected from each steer before and after slaughter. The Musculus longissimus thoracis et lumborum was sampled for selected meat quality measurements. Nguni steers on the CN diet had higher (P < 0.05) concentrations of post-mortem urinary norepinephrine and dopamine compared with those that received the AK and SF diets. Norepinephrine was negatively linearly related (P < 0.05) to the Warner-Bratzler shear force value of meat aged for 21 days and cooking loss of meat aged for 2 days (CL2) in steers that were given the SF diet. Meat pH and drip loss values were inversely related (P < 0.05) to epinephrine concentration in steers that received the AK diet. Dopamine concentration was negatively linearly related (P < 0.05) to water holding capacity and CL2 for steers on the CN diet. For steers on the CN diet, lightness (L*) values increased (P < 0.05) with increase in dopamine concentration. It was concluded that stress responsiveness and its relationship to certain beef quality attributes could be positively manipulated by supplementation with A. karroo leaves.  相似文献   

7.
Carbamazepine (25 mg/kg body weight) was administered intraperitoneally to adult male Wistar rats for 45 days and norepinephrine (NE), dopamine (DA) and serotonin (5-HT) levels were simultaneously assayed in discrete brain regions by high performance liquid chromatographic (HPLC) method. Experimental rats displayed no behavioral abnormalities. Body and brain weights were not significantly different from control group of rats. After exposure it was observed that norepinephrine levels were elevated in motor cortex (P<0.01) and cerebellum (P<0.05), while dopamine levels were decreased in these two regions (P<0.001, P<0.05). However, dopamine levels were increased in hippocampus (P<0.01). Serotonin levels were significantly decreased in motor cortex (P<0.001) and hypothalamus (P<0.001) but increased in striatum-accumbens (P<0.001) and brainstem (P<0.001). These results suggest that carbamazepine may mediate its anticonvulsant effect by differential alterations of monoamine levels in discrete brain regions particularly in motor cortex and cerebellum.  相似文献   

8.
In Channa punctatus, a significant daily variation in hypothalamic S-HT level and monoamine oxidase (MAO) activity was noticed in preparatory phase (February), but not in prespawning (May) or postspawning (November) phases. Hypothalamic dopamine (DA) and noradrenaline (NA), on the other hand, showed marked daily variation in their levels during all the three seasons with peak values in the photophase. The overall activity of MAO (mean ± SEM on 24-hr period) increased from November to May through February, whereas the 5-HT content which was high in November decreased during February and May. The NA and DA levels were low in November and Februry and high in May. The catecholamine (CA) content and MAO activity increased with increasing photoperiod and temperature which is indicative of an enhanced CA metabolism.  相似文献   

9.
为探讨贯叶连翘对慢性应激大鼠生长和脑单胺类神经递质的影响,用15只大鼠设置对照组、应激组和贯叶连翘组3组实验。应激组和贯叶连翘组均进行7天的应激刺激后,贯叶连翘组灌胃贯叶连翘10d。实验结束后,取3组大鼠的脑组织,用高效液相色谱法测定高香草酸(HVA)、去甲肾上腺素(NE)、多巴胺(DA)和5-羟色胺(5-HT)的含量。结果表明,应激组大鼠日增重明显低于对照组;而贯叶连翘组大鼠的日增重明显高于应激组。应激组大鼠海马、纹状体和前额叶中的HVA、NE、DA和5-HT与对照组间均无显著差异。贯叶连翘组大鼠纹状体中的DA含量明显高于应激组;而前额叶中的DA则明显低于应激组。因此,贯叶连翘对慢性应激引起的大鼠生长受抑有缓解作用,对其脑内单胺类神经递质有部分调节作用。  相似文献   

10.
BALB/c mice injected intravenously with a single, sub-lethal dose of Nocardia asteroides GUH-2 develop several levodopa responsive movement disorders. These included head-shake, stooped posture, bradykinesia, and hesitation to forward movement (6). The changes in monoamine levels in the brain of these mice were determined. There was a significant loss of dopamine with greatly increased dopamine turnover in the neostriatum 7 to 29 days after infection. These effects were specific for dopaminergic neurons since minimal changes were found in neostriatal norepinephrine and serotonin even though serotonin turnover was increased. Changes in monoamine metabolism were not limited to the neostriatum. There were reduced levels of serotonin and norepinephrine with increased serotonin turnover in the cerebellum. One year after infection, dopamine metabolism had returned to near normal levels, but many of the movement disorders persisted. Specific changes in neurochemistry did not always appear to correspond with these impairments. Nevertheless, these data are similar to those reported in MPTP treated BALB/c mice.  相似文献   

11.
Metabolism of Deoxyuridine in Rabbit Brain   总被引:1,自引:2,他引:1  
Abstract: The metabolism of [3H]deoxyuridine by rabbit brain was investigated in vitro and in vivo . In vitro , brain slices from various regions of brain and from all age groups accumulated [3H]deoxyuridine from artificial CSF. Within the slices, a portion of the accumulated [3H]deoxyuridine was metabolized to [3H]deoxyuridine phosphate, with subsequent conversion to [3H]thymidine phosphate, and ultimately [3H]DNA. The percentage of the [3H]deoxyuridine phosphorylated and subsequently converted into [3H]DNA was highest at birth and declined to adult levels in 3-month-old rabbits. Thymidine, when added to the incubation medium with the [3H]deoxyuridine, was approximately 10 times as potent as unlabeled deoxyuridine in inhibiting the intracellular phosphorylation and conversion of [3H]deoxyuridine to [3H]thymidine phosphate in brain slices. In vivo , 2.5 h after intraventricular injection of [3H]deoxyuridine, over 90% of the [3H]deoxyuridine was cleared from the central nervous system at all ages. However, in both newborn and 3-month-old rabbits, approximately 40 and 12%, respectively, of the 3H remaining in brain was phosphorylated and converted to [3H]thymidine phosphates; and 11 and 4%, respectively, of the 3H remaining in brain was converted to [3H]DNA. These results show that both immature and mature rabbit brain is able to incorporate deoxyuridine into DNA. Thus, all the enzymes involved in this conversion, including thymidylate synthetase (EC 2.1.1.45), are present and active in brain throughout life.  相似文献   

12.
张峰  李发曾 《动物学研究》2006,27(6):621-625
为探讨合欢花对慢性应激大鼠生长和脑单胺类神经递质的影响,采用15只大鼠,设置了对照组、应激组和合欢花组3组实验。应激组和合欢花组均接受7天的应激刺激,之后合欢花组再灌胃合欢花10天。实验结束后,取3组大鼠的脑组织,用高效液相色谱法测定高香草酸(HVA)、去甲肾上腺素(NE)、多巴胺(DA)和5-羟色胺(5-HT)的含量。结果表明,应激组大鼠日增重显著低于对照组(P=0.011);而合欢花组大鼠的日增重极显著高于应激组(P=0.002)。应激组大鼠海马、纹状体和前额叶中的HVA含量与对照组相比,虽有升高的趋势,但无显著差异;两组间的NE、DA和5-HT也无显著差异。合欢花组大鼠海马中的HVA、DA含量明显高于应激组,而前额叶中的多巴胺和5-羟色胺,以及纹状体中的5-羟色胺均明显低于应激组。这表明合欢花对慢性应激引起的大鼠生长受抑有缓解作用,对其脑内单胺类神经递质有调节作用。  相似文献   

13.
In Channa punctatus, a significant daily variation in hypothalamic S-HT level and monoamine oxidase (MAO) activity was noticed in preparatory phase (February), but not in prespawning (May) or postspawning (November) phases. Hypothalamic dopamine (DA) and noradrenaline (NA), on the other hand, showed marked daily variation in their levels during all the three seasons with peak values in the photophase. The overall activity of MAO (mean ± SEM on 24-hr period) increased from November to May through February, whereas the 5-HT content which was high in November decreased during February and May. The NA and DA levels were low in November and Februry and high in May. The catecholamine (CA) content and MAO activity increased with increasing photoperiod and temperature which is indicative of an enhanced CA metabolism.  相似文献   

14.
The role of dopamine in iron uptake into catecholaminergic neurons, and dopamine oxidation to aminochrome and its one-electron reduction in iron-mediated neurotoxicity, was studied in RCSN-3 cells, which express both tyrosine hydroxylase and monoamine transporters. The mean +/- SD uptake of 100 microm 59FeCl3 in RCSN-3 cells was 25 +/- 4 pmol per min per mg, which increased to 28 +/- 8 pmol per min per mg when complexed with dopamine (Fe(III)-dopamine). This uptake was inhibited by 2 microm nomifensine (43%p < 0.05), 100 microm imipramine (62%p < 0.01), 30 microm reboxetine (71%p < 0.01) and 2 mm dopamine (84%p < 0.01). The uptake of 59Fe-dopamine complex was Na+, Cl- and temperature dependent. No toxic effects in RCSN-3 cells were observed when the cells were incubated with 100 microm FeCl3 alone or complexed with dopamine. However, 100 microm Fe(III)-dopamine in the presence of 100 microm dicoumarol, an inhibitor of DT-diaphorase, induced toxicity (44% cell death; p < 0.001), which was inhibited by 2 microm nomifensine, 30 microm reboxetine and 2 mm norepinephrine. The neuroprotective action of norepinephrine can be explained by (1) its ability to form complexes with Fe3+, (2) the uptake of Fe-norepinephrine complex via the norepinephrine transporter and (3) lack of toxicity of the Fe-norepinephrine complex even when DT-diaphorase is inhibited. These results support the proposed neuroprotective role of DT-diaphorase and norepinephrine.  相似文献   

15.
Monoaminergic systems are important modulators of the responses to stress. Stress may influence feeding behavior, and the involvement of monoamines in the control of food intake is well recognized. We investigated the effects induced by chronic-restraint stress, 1 h a day, for 40 days, on eating behavior and on monoamines in distinct brain structures. Increased consumption of sweet pellets, and not of peanuts, was observed. Dopamine (DA), serotonin (5–HT), and their metabolites were measured by HPLC-EC. After chronic restraint, the results observed were decreased 5–HT in hippocampus, with increased 5–HIAA/5–HT; decreased 5–HIAA levels in cortex; reduction in DA in hippocampus, and increased levels in amygdala and hypothalamus; HVA increased in cortex, as well as HVA/DA ratio, while DOPAC/DA decreased. HVA decreased in hypothalamus, as well as HVA/DA, and DOPAC/DA and HVA/DA decreased in the amygdala. These results suggest that restraint stress differentially affects the activity of central dopaminergic and serotonergic neurons, and this may be related to the effects observed in eating behavior.  相似文献   

16.
Crustacean hyperglycemic hormone (CHH), a neurohormone synthesized and released from the x-organ sinus gland complex, is primarily involved in carbohydrate metabolism; biogenic amines and peptidergic neuroregulators are known to modulate the release of CHH. Marked elevations of hemolymph glucose titers, which peaked within 2 h, were observed in both intact and bilaterally eyestalk-ablated prawns, Macrobrachium rosenbergii, when they were transferred directly from their optimal temperature of 28 °C to lower temperatures close to their lethal limit. Hyperglycemia can therefore be considered a characteristic response in this species under cold shock. Involvement of biogenic amines in the hyperglycemic response was also demonstrated. Hyperglycemic effects of epinephrine, dopamine and serotonin were mediated through CHH at the eyestalk level, but the response under cold shock was not exclusively mediated through CHH. It is suggested that factor(s) other than CHH are involved in the hyperglycemic response, possibly norepinephrine or/and octopamine. Accepted: 24 October 1998  相似文献   

17.
Levels of brain neurotransmitters and their metabolites, as well as concentrations of enzymes associated with their synthesis and metabolism, fluctuate during the day in patterns defined as circadian. The present study examined these rhythms in albino rats exposed to 60-Hz electric fields. Thirty-six animals were exposed to a 39 kV/m field for 4 weeks, 20 h/day, in a parallel-plate electrode system. A group of 36 sham animals was similarly handled and housed in a nonenergized exposure system. On the sampling day, animals were sacrificed at 4-h intervals throughout the 24-h day. Brains were removed, dissected, and kept frozen until chemically analyzed. The levels of biogenic amines and their acidic metabolites in the striatum, hypothalamus, and hippocampus were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) methods. Repeated exposure to 60-Hz electric fields produced significant alterations in the diurnal rhythms of several biogenic amines: dihydroxyphenylacetic acid (DOPAC, the primary metabolite of dopamine in the rat) in the striatum, and norepinephrine, dopamine, and 5-hydroxyindoleacetic acid (5-HIAA; serotonin metabolite) in the hypothalamus. Levels of serotonin in the striatum and hypothalamus showed clear circadian patterns that was not affected by the field. No diurnal or field-related changes were observed in the hippocampal amines.  相似文献   

18.
The development and regional distribution of methionine synthetase (EC 2.1.1.13) in rabbit brain was determined. In adult rabbits, the specific activity (units per milligram protein) of methionine synthetase in cortex, cerebellum, brain stem, and corpus striatum was comparable to the specific activity in whole brain (0.5 units/mg). In the first few weeks of life, the specific activity of methionine synthetase in whole rabbit brain declined from a value of 1.1 units/mg at 1 day of age to 0.5 units/mg at 6–10 weeks. Two-year-old rabbits had 0.6 units/mg in whole brain. These results show that: (a) methionine synthetase is distributed widely in mammalian brain and (b) methionine synthetase activity in brain declines relatively little with development.  相似文献   

19.
兔脑内Orexin B免疫阳性神经元的分布定位   总被引:4,自引:0,他引:4  
采用免疫组织化学方法研究了10只青紫蓝兔脑内Orexin B免疫阳性神经元的分布定位。结果显示,Orexin B免疫阳性神经元分布于下丘脑的室旁核、背内侧核、穹隆周核、外侧区和后区以及底丘脑的未定带。以下丘脑背内侧核、穹隆周核和外侧区的阳性神经元数量较多,下丘脑室旁核、后区和未定带较少。表明了兔脑内Orexin B免疫阳性神经元的分布与Orexin A免疫阳性神经元的分布存在一些差异,提示两种Orexin的产生部位和生理功能可能也存在差异。  相似文献   

20.
Recent advances in the study of alcoholism have thrown light on the involvement of various neurotransmitters in the phenomenon of alcohol addiction. Various neurotransmitters have been implicated in alcohol addiction due to their imbalance in the brain, which could be either due to their excess activity or inhibition. This review paper aims to consolidate and to summarize some of the recent papers which have been published in this regard. The review paper will give an overview of the neurobiology of alcohol addiction, followed by detailed reviews of some of the recent papers published in the context of the genetics of alcohol addiction. Furthermore, the author hopes that the present text will be found useful to novices and experts alike in the field of neurotransmitters in alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号