共查询到20条相似文献,搜索用时 0 毫秒
1.
Nicotine-Induced Changes in Neurotransmitter Levels in Brain Areas Associated with Cognitive Function 总被引:12,自引:0,他引:12
Singer S Rossi S Verzosa S Hashim A Lonow R Cooper T Sershen H Lajtha A 《Neurochemical research》2004,29(9):1779-1792
Nicotine, one of the most widespread drugs of abuse, has long been shown to impact areas of the brain involved in addiction and reward. Recent research, however, has begun to explore the positive effects that nicotine may have on learning and memory. The mechanisms by which nicotine interacts with areas of cognitive function are relatively unknown. Therefore, this paper is part of an ongoing study to evaluate regional effects of nicotine enhancement of cognitive function. Nicotine-induced changes in the levels of three neurotransmitters, dopamine (DA), serotonin (5-HT), norepinepherine (NE), their metabolites, homovanillic acid (HVA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and their precursor, L-DOPA, were evaluated in the ventral and dorsal hippocampus (VH and DH), prefrontal and medial temporal cortex (PFC and MTC), and the ventral tegmental area (VTA) using in vivo microdialysis in awake, freely moving, male Sprague-Dawley rats. The animals were treated with acute nicotine (0.5 mg/kg, s.c.) halfway through the 300-min experimental period. The reuptake blockers, desipramine (100 microM) and fluoxetine (30 microM), were given to increase the levels of NE and 5-HT so that they could be detected. Overall, a nicotine-induced DA increase was found in some areas, and this increase was potentiated by desipramine and fluoxetine. The two DA metabolites, HVA and DOPAC, increased in all the areas throughout the experiments, both with and without the inhibitors, indicating a rapid metabolism of the released DA. The increase in these metabolites was greater than the increase in DA. 5-HT was increased in the DH, MTC, and VTA in the presence of fluoxetine; its metabolite, 5-HIAA, was increased in the presence and absence of fluoxetine. Except in the VTA, NE levels increased to a similar extent with desipramine and fluoxetine. Overall, nicotine appeared to increase the release and turnover of these three neurotransmitters, which was indicated by significant increases in their metabolites. Furthermore, DA, and especially HVA and DOPAC, increased for the 150 min following nicotine administration; 5-HT and NE changes were shorter in duration. As gas chromatography experiments showed that nicotine levels in the brain decreased by 75% after 150 min, this may indicate that DA is more susceptible to lower levels of nicotine than 5-HT or NE. In conclusion, acute nicotine administration caused alterations in the levels of DA, 5-HT, and NE, and in the metabolism of DA and 5-HT, in brain areas that are involved in cognitive processes. 相似文献
2.
A. Rastegar L. Ciesielski S. Simler M. Messripour Prof. P. Mandel 《Neurochemical research》1993,18(4):471-477
The effect of castration on the levels of brain monoamines and their metabolites has been investigated in rats which became or did not become muricidal following long-term isolation. Fourteen brain areas were explored: olfactory bulbs (OB), olfactory tubercles (OT), septum (Se), striatum (Sr), amygdala (A), thalamus (Th), hypothalamus (Hy), hippocampus (Hi), superior colliculus (SC), inferior colliculus (IC), raphe (Ra), pons-medulla (PM), frontal cortex (FC), temporal cortex (TC) and parietal cortex (PC). Except in the raphe of non muricidal rats and in the striatum of muricidal animals, all other areas examined demonstrate some changes of monoamines neurotransmitter or their metabolites after castration. The strongest changes, always increases, were found in the thalamus. In several brain areas, the changes occurring after castration, differ quantitatively and qualitatively in muricidal and non-muricidal rats.Special issue dedicated to Dr. Claude Baxter.Prof. P. Mandel passed away on October 6th, 1992. 相似文献
3.
We investigated the effects of vitamin E deficiency on the monoamine metabolism in the rat brain. Male Wistar rats fed on the vitamin E deficient diet for 24 weeks were analyzed. At 28 weeks, they showed a reduced growth rate (52% of reduction), muscle atrophy, a motor weakness of hind limbs and disturbance of gait. The concentrations of monoamines, their precursors and metabolites in the brain were simultaneously determined using high performance liquid chromatography (HPLC) coupled with a coulometric detection with electrode array system. In addition, tryptophan hydroxylase activity was measured. The dopamine (p = 0.009) and serotonin (p = 0.04) levels in the brain stem of vitamin E deficients rats were significantly lower than in the controls, whereas their precursors tyrosine (p = 0.0009) and tryptophan (p = 0.0065) levels in the brain stem were significantly higher than in the controls. Moreover, tryptophan hydroxylase activity (p = 0.0005) in the brain stem of vitamin E deficient brains was significantly lower than in the controls. All statistical comparisons were done using non-parametric tests (Mann-Whitney U test). These results suggest that vitamin E deficiency may play a role in the disturbance of monoamine metabolism in rat brain. 相似文献
4.
The present study demonstrates that catecholamine responsiveness in Yersinia enterocolitica, a bacterial pathogen whose infectious spectrum is principally limited to the gut, is limited to norepinephrine and dopamine, and not epinephrine; this behavior contrasts with observations for two pathogens with a wider extra-gastrointestinal spectrum, Escherichia coli O157:H7 and Salmonella enterica, which respond to all three catecholamines. Epinephrine showed lower potency than norepinephrine and dopamine in inducing growth of E. coli and S. enterica, and was a potent antagonist of norepinephrine and dopamine growth responsiveness in Y. enterocolitica. Given that only norepinephrine and dopamine and not epinephrine-containing neurons are found with the enteric nervous system, the results suggest that certain of the more exclusive enteric pathogens may have developed response systems preferentially for those neuroendocrine hormones that are produced by the enteric nervous system as host-derived signals by which to sense the environment and initiate pathogenic processes. 相似文献
5.
In Channa punctatus, a significant daily variation in hypothalamic S-HT level and monoamine oxidase (MAO) activity was noticed in preparatory phase (February), but not in prespawning (May) or postspawning (November) phases. Hypothalamic dopamine (DA) and noradrenaline (NA), on the other hand, showed marked daily variation in their levels during all the three seasons with peak values in the photophase. The overall activity of MAO (mean ± SEM on 24-hr period) increased from November to May through February, whereas the 5-HT content which was high in November decreased during February and May. The NA and DA levels were low in November and Februry and high in May. The catecholamine (CA) content and MAO activity increased with increasing photoperiod and temperature which is indicative of an enhanced CA metabolism. 相似文献
6.
Metabolism of Deoxyuridine in Rabbit Brain 总被引:1,自引:2,他引:1
Abstract: The metabolism of [3 H]deoxyuridine by rabbit brain was investigated in vitro and in vivo . In vitro , brain slices from various regions of brain and from all age groups accumulated [3 H]deoxyuridine from artificial CSF. Within the slices, a portion of the accumulated [3 H]deoxyuridine was metabolized to [3 H]deoxyuridine phosphate, with subsequent conversion to [3 H]thymidine phosphate, and ultimately [3 H]DNA. The percentage of the [3 H]deoxyuridine phosphorylated and subsequently converted into [3 H]DNA was highest at birth and declined to adult levels in 3-month-old rabbits. Thymidine, when added to the incubation medium with the [3 H]deoxyuridine, was approximately 10 times as potent as unlabeled deoxyuridine in inhibiting the intracellular phosphorylation and conversion of [3 H]deoxyuridine to [3 H]thymidine phosphate in brain slices. In vivo , 2.5 h after intraventricular injection of [3 H]deoxyuridine, over 90% of the [3 H]deoxyuridine was cleared from the central nervous system at all ages. However, in both newborn and 3-month-old rabbits, approximately 40 and 12%, respectively, of the 3 H remaining in brain was phosphorylated and converted to [3 H]thymidine phosphates; and 11 and 4%, respectively, of the 3 H remaining in brain was converted to [3 H]DNA. These results show that both immature and mature rabbit brain is able to incorporate deoxyuridine into DNA. Thus, all the enzymes involved in this conversion, including thymidylate synthetase (EC 2.1.1.45), are present and active in brain throughout life. 相似文献
7.
《Chronobiology international》2013,30(4):311-316
In Channa punctatus, a significant daily variation in hypothalamic S-HT level and monoamine oxidase (MAO) activity was noticed in preparatory phase (February), but not in prespawning (May) or postspawning (November) phases. Hypothalamic dopamine (DA) and noradrenaline (NA), on the other hand, showed marked daily variation in their levels during all the three seasons with peak values in the photophase. The overall activity of MAO (mean ± SEM on 24-hr period) increased from November to May through February, whereas the 5-HT content which was high in November decreased during February and May. The NA and DA levels were low in November and Februry and high in May. The catecholamine (CA) content and MAO activity increased with increasing photoperiod and temperature which is indicative of an enhanced CA metabolism. 相似文献
8.
BALB/c mice injected intravenously with a single, sub-lethal dose of Nocardia asteroides GUH-2 develop several levodopa responsive movement disorders. These included head-shake, stooped posture, bradykinesia, and hesitation to forward movement (6). The changes in monoamine levels in the brain of these mice were determined. There was a significant loss of dopamine with greatly increased dopamine turnover in the neostriatum 7 to 29 days after infection. These effects were specific for dopaminergic neurons since minimal changes were found in neostriatal norepinephrine and serotonin even though serotonin turnover was increased. Changes in monoamine metabolism were not limited to the neostriatum. There were reduced levels of serotonin and norepinephrine with increased serotonin turnover in the cerebellum. One year after infection, dopamine metabolism had returned to near normal levels, but many of the movement disorders persisted. Specific changes in neurochemistry did not always appear to correspond with these impairments. Nevertheless, these data are similar to those reported in MPTP treated BALB/c mice. 相似文献
9.
Paris I Martinez-Alvarado P Perez-Pastene C Vieira MN Olea-Azar C Raisman-Vozari R Cardenas S Graumann R Caviedes P Segura-Aguilar J 《Journal of neurochemistry》2005,92(5):1021-1032
The role of dopamine in iron uptake into catecholaminergic neurons, and dopamine oxidation to aminochrome and its one-electron reduction in iron-mediated neurotoxicity, was studied in RCSN-3 cells, which express both tyrosine hydroxylase and monoamine transporters. The mean +/- SD uptake of 100 microm 59FeCl3 in RCSN-3 cells was 25 +/- 4 pmol per min per mg, which increased to 28 +/- 8 pmol per min per mg when complexed with dopamine (Fe(III)-dopamine). This uptake was inhibited by 2 microm nomifensine (43%p < 0.05), 100 microm imipramine (62%p < 0.01), 30 microm reboxetine (71%p < 0.01) and 2 mm dopamine (84%p < 0.01). The uptake of 59Fe-dopamine complex was Na+, Cl- and temperature dependent. No toxic effects in RCSN-3 cells were observed when the cells were incubated with 100 microm FeCl3 alone or complexed with dopamine. However, 100 microm Fe(III)-dopamine in the presence of 100 microm dicoumarol, an inhibitor of DT-diaphorase, induced toxicity (44% cell death; p < 0.001), which was inhibited by 2 microm nomifensine, 30 microm reboxetine and 2 mm norepinephrine. The neuroprotective action of norepinephrine can be explained by (1) its ability to form complexes with Fe3+, (2) the uptake of Fe-norepinephrine complex via the norepinephrine transporter and (3) lack of toxicity of the Fe-norepinephrine complex even when DT-diaphorase is inhibited. These results support the proposed neuroprotective role of DT-diaphorase and norepinephrine. 相似文献
10.
C. M. Kuo Y. H. Yang 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1999,169(1):49-54
Crustacean hyperglycemic hormone (CHH), a neurohormone synthesized and released from the x-organ sinus gland complex, is
primarily involved in carbohydrate metabolism; biogenic amines and peptidergic neuroregulators are known to modulate the release
of CHH. Marked elevations of hemolymph glucose titers, which peaked within 2 h, were observed in both intact and bilaterally
eyestalk-ablated prawns, Macrobrachium rosenbergii, when they were transferred directly from their optimal temperature of 28 °C to lower temperatures close to their lethal
limit. Hyperglycemia can therefore be considered a characteristic response in this species under cold shock. Involvement of
biogenic amines in the hyperglycemic response was also demonstrated. Hyperglycemic effects of epinephrine, dopamine and serotonin
were mediated through CHH at the eyestalk level, but the response under cold shock was not exclusively mediated through CHH.
It is suggested that factor(s) other than CHH are involved in the hyperglycemic response, possibly norepinephrine or/and octopamine.
Accepted: 24 October 1998 相似文献
11.
Levels of brain neurotransmitters and their metabolites, as well as concentrations of enzymes associated with their synthesis and metabolism, fluctuate during the day in patterns defined as circadian. The present study examined these rhythms in albino rats exposed to 60-Hz electric fields. Thirty-six animals were exposed to a 39 kV/m field for 4 weeks, 20 h/day, in a parallel-plate electrode system. A group of 36 sham animals was similarly handled and housed in a nonenergized exposure system. On the sampling day, animals were sacrificed at 4-h intervals throughout the 24-h day. Brains were removed, dissected, and kept frozen until chemically analyzed. The levels of biogenic amines and their acidic metabolites in the striatum, hypothalamus, and hippocampus were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) methods. Repeated exposure to 60-Hz electric fields produced significant alterations in the diurnal rhythms of several biogenic amines: dihydroxyphenylacetic acid (DOPAC, the primary metabolite of dopamine in the rat) in the striatum, and norepinephrine, dopamine, and 5-hydroxyindoleacetic acid (5-HIAA; serotonin metabolite) in the hypothalamus. Levels of serotonin in the striatum and hypothalamus showed clear circadian patterns that was not affected by the field. No diurnal or field-related changes were observed in the hippocampal amines. 相似文献
12.
Monoaminergic systems are important modulators of the responses to stress. Stress may influence feeding behavior, and the involvement of monoamines in the control of food intake is well recognized. We investigated the effects induced by chronic-restraint stress, 1 h a day, for 40 days, on eating behavior and on monoamines in distinct brain structures. Increased consumption of sweet pellets, and not of peanuts, was observed. Dopamine (DA), serotonin (5–HT), and their metabolites were measured by HPLC-EC. After chronic restraint, the results observed were decreased 5–HT in hippocampus, with increased 5–HIAA/5–HT; decreased 5–HIAA levels in cortex; reduction in DA in hippocampus, and increased levels in amygdala and hypothalamus; HVA increased in cortex, as well as HVA/DA ratio, while DOPAC/DA decreased. HVA decreased in hypothalamus, as well as HVA/DA, and DOPAC/DA and HVA/DA decreased in the amygdala. These results suggest that restraint stress differentially affects the activity of central dopaminergic and serotonergic neurons, and this may be related to the effects observed in eating behavior. 相似文献
13.
The development and regional distribution of methionine synthetase (EC 2.1.1.13) in rabbit brain was determined. In adult rabbits, the specific activity (units per milligram protein) of methionine synthetase in cortex, cerebellum, brain stem, and corpus striatum was comparable to the specific activity in whole brain (0.5 units/mg). In the first few weeks of life, the specific activity of methionine synthetase in whole rabbit brain declined from a value of 1.1 units/mg at 1 day of age to 0.5 units/mg at 6–10 weeks. Two-year-old rabbits had 0.6 units/mg in whole brain. These results show that: (a) methionine synthetase is distributed widely in mammalian brain and (b) methionine synthetase activity in brain declines relatively little with development. 相似文献
14.
Niladri Banerjee 《Indian journal of human genetics》2014,20(1):20-31
Recent advances in the study of alcoholism have thrown light on the involvement of various neurotransmitters in the phenomenon of alcohol addiction. Various neurotransmitters have been implicated in alcohol addiction due to their imbalance in the brain, which could be either due to their excess activity or inhibition. This review paper aims to consolidate and to summarize some of the recent papers which have been published in this regard. The review paper will give an overview of the neurobiology of alcohol addiction, followed by detailed reviews of some of the recent papers published in the context of the genetics of alcohol addiction. Furthermore, the author hopes that the present text will be found useful to novices and experts alike in the field of neurotransmitters in alcoholism. 相似文献
15.
Yano T Kato B Fukuda F Shinbara H Yoshimoto K Ozaki A Kuriyama K 《Neurochemical research》2004,29(1):283-293
Alterations in cerebral monoamines following application of electroacupuncture were investigated using conscious rats with and without application of restraining stress. The dopamine and serotonin levels were significantly decreased in the nucleus accumbens, caudate putamen, and lateral hypothalamus and increased in the dorsal raphe nucleus by restraining stress. On the other hand, application of electroacupuncture on the lumbar and hindlimb segments eliminated the above changes in dopamine, while the changes in serotonin were attenuated by lumbar and hindlimb electroacupuncture. However, the effects of hindlimb electroacupuncture were greater than those of lumbar electroacupuncture. These results clearly indicate that lumbar and hindlimb electroacupuncture stimulations have differential effects on brain monoaminergic neurons in rats exposed to restraining stress. Moxa burning stimulation was applied to the lumbar and hindlimb segments of rats without restraining stress. The dopamine level was significantly increased in the midbrain substantia nigra-ventrotegmental area by hindlimb moxibusion. On the other hand, the serotonin levels were significantly increased in the nucleus amygdala by lumber moxibusion and decreased in the nucleus accumbens by hindlimb moxibusion. The present results indicate that electroacupuncture applied to the lumbar and hindlimb segments has an antistress effect, while the application of moxibustion to the lumbar and hindlimb segments was likely to stimulate the functions of mesocortical and mesolimbic dopaminergic and serotonergic neurons. We suggest that functional alterations in cerebral dopaminergic and serotonergic neurons are involved in the clinical efficacy of electroacupuncture and moxibustion, especially because of their antistress and psychosomatic actions. 相似文献
16.
兔2—细胞胚胎电融合及其融合胚体外发育的研究 总被引:6,自引:0,他引:6
本文对兔2-细胞胚胎卵裂球电融合制作四倍体胚胎的适宜条件进行了研究。电场强度为2.0千伏/厘米,脉冲时程为40微秒时,可获得最好的融合率(68.9-100%,平均为77.3%)及融合胚发育率(74.5%),该发育率与受精卵体外囊胚发育率(79.3%)相似。对于电融合及融合胚发育,非电解质溶液(0.3mol/L甘露醇+0.1mmol/L氯化钙+0.1mmol/L硫酸镁)优于电解质溶液。融合后,72. 相似文献
17.
Kvetňanský Richard Pacák Karel Tokarev Dmitrij Jeloková Jana Ježová Daniela Rusnák Milan 《Neurochemical research》1997,22(8):995-1001
Formation of nitric oxide, an endothelium-derived relaxing factor, can be inhibited by administration of N-nitro-L-arginine methylesther (L-NAME). In the present study, the activity of the sympathoadrenal system in rats with blood pressure (BP) elevation induced by L-NAME was investigated. L-NAME was administered in a dose of 50 mg/kg, i.p. every 12 h for 4 days. Blood samples were collected via chronically inserted arterial catheters in conscious, freely moving rats at rest and during immobilization stress. Plasma epinephrine (EPI), norepinephrine (NE), and dopamine (DA), as well as catecholamine metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC) were measured by HPLC method. In L-NAME treated animals, which showed a significant increase in BP, plasma EPI levels were markedly elevated both before and during stress. Plasma NE levels were not significantly increased, however, DHPG levels, which indicate NE turnover and reuptake, were highly elevated. Plasma DA levels were not changed after L-NAME administration but DA metabolite DOPAC showed a significant elevation both under basal conditions and during stress. Thus, the present results indicate that the prolonged blockade of nitric oxide synthesis that causes arterial hypertension is associated with an activation of the sympathoadrenal system. 相似文献
18.
This research was initiated to assess the turnover rates (TORs) of dopamine (DA), norepinephrine (NA), serotonin (5-HT), aspartate, glutamate, and GABA in brain regions during rodent ethanol/sucrose (EtOH) and sucrose (SUC) drinking and in animals with a history of EtOH or SUC drinking to further characterize the neuronal systems that underlie compulsive consumption. Groups of five male rats were used, with two trained to drink EtOH solutions, two to drink SUC and one to serve as a non-drinking control. When stable drinking patterns were obtained, rats were pulse labeled intravenously and killed 60 or 90 min later and the TORs of DA, norepinephrine, 5-HT, aspartate, glutamate, and GABA determined in brain regions. Changes in the TOR of 5-HT, DA, and NA were detected specific to EtOH drinking, SUC drinking or a history of EtOH or SUC drinking. An acute EtOH deprivation effect was detected that was mostly reversed with EtOH drinking. These results suggest that binge-like drinking of moderate amounts of EtOH produces a deficit in neuronal function that could set the stage for the alleviation of anhedonic stimuli with further EtOH intake that strengthen EtOH seeking behaviors which may contribute to increased EtOH use in at risk individuals. 相似文献
19.
Changes in Rabbit Brain Cytosolic and Membrane-Bound Gangliosides During Prenatal Life 总被引:1,自引:4,他引:1
Sandro Sonnino Riccardo Ghidoni Massimo Masserini Franco Aporti Guido Tettamanti 《Journal of neurochemistry》1981,36(1):227-232
The present study deals with the developmental profile of cytosolic and membrane-bound gangliosides in rabbit whole brain from the 21st day of pregnancy, the time at which brain could be macroscopically recognized and handled, till birth. In this period of prenatal life the content of membrane-bound gangliosides showed a 2.5-fold increase, referred to fresh and dry brain weight and to membrane-bound protein; the content of cytosolic gangliosides reached a maximum at 21-22 days of pregnancy, and then underwent to birth a threefold diminution. The qualitative pattern of membrane-bound gangliosides, in the same period of life, was characterized by an increase of GD1a and GM1 (more marked for GD1a), a decrease of GT1a, GT1b and GQ1b and a constant level of GD3 and GD1b. At 21 days of pregnancy the most abundant gangliosides were GT1b, and GQ1b, followed by GD1a and GD1b; at birth it was GD1a followed by GT1b GD1b, and GM1 The qualitative pattern of cytosolic gangliosides closely resembled, during the entire period of prenatal life examined, that of membrane-bound gangliosides. 相似文献
20.
Hiroshi Yao Takashi Matsumoto Makoto Hirano Toshihide Kuroki Tetsuyuki Tsutsumi Hideyuki Uchimura Kaoru Nakamura Tatsuo Nakahara Masatoshi Fujishima 《Neurochemical research》1989,14(1):75-79
This study attempted to investigate the possible involvement of the brain stem noradrenergic system in the development of hypertension in spontaneously hypertensive rats. Steady-state norepinephrine, dopamine, serotonin and 5-hydroxyindoleacetic acid concentrations and norepinephrine turnover were determined in the individual brain stem nuclei using high performance liquid chromatography with electrochemical detection. Decreased norepinephrine contents in the nucleus tractus solitarii in spontaneously hypertensive rats compared with Wistar-Kyoto rats at the age of 4, 8, and 16 weeks were demonstrated. In later stages (8 and 16 weeks), increased norepinephrine levels were observed in the nucleus reticularis gigantocellularis, the A1 and A5 areas. Norepinephrine turnover was not different between spontaneously hypertensive rats and Wistar-Kyoto rats in the nucleus tractus solitarii at the age of 4 and 16 weeks and increased in the nucleus reticularis gigantocellularis of spontaneously hypertensive rats at 16 weeks. Our results indicate that altered norepinephrine metabolism in the specific brain stem nuclei, especially the consistently decreased norepinephrine in the nucleus tractus solitarii of spontaneously hypertensive rats, contribute to the development of genetic hypertension. 相似文献