首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extended Fer-CIP4 homology (EFC)/FCH-BAR (F-BAR) domains generate and bind to tubular membrane structures of defined diameters that are involved in the formation and fission of endocytotic vesicles. Formin-binding protein 17 (FBP17) and Toca-1 contain EFC/F-BAR domains and bind to neural Wiskott-Aldrich syndrome protein (N-WASP), which links phosphatidylinositol (4,5)-bisphosphate (PIP(2)) and the Rho family GTPase Cdc42 to the Arp2/3 complex. The N-WASP-WASP-interacting protein (WIP) complex, a predominant form of N-WASP in cells, is known to be activated by Toca-1 and Cdc42. Here, we show that N-WASP-WIP complex-mediated actin polymerization is activated by phosphatidylserine-containing membranes depending on membrane curvature in the presence of Toca-1 or FBP17 and in the absence of Cdc42 and PIP(2). Cdc42 further promoted the activation of actin polymerization by N-WASP-WIP. Toca-1 or FBP17 recruited N-WASP-WIP to the membrane. Conserved acidic residues near the SH3 domain of Toca-1 and FBP17 positioned the N-WASP-WIP to be spatially close to the membrane for activation of actin polymerization. Therefore, curvature-dependent actin polymerization is stimulated by spatially appropriate interactions of EFC/F-BAR proteins and the N-WASP-WIP complex with the membrane.  相似文献   

2.
Pombe Cdc15 homology (PCH) proteins play an important role in a variety of actin-based processes, including clathrin-mediated endocytosis (CME). The defining feature of the PCH proteins is an evolutionarily conserved EFC/F-BAR domain for membrane association and tubulation. In the present study, we solved the crystal structures of the EFC domains of human FBP17 and CIP4. The structures revealed a gently curved helical-bundle dimer of approximately 220 A in length, which forms filaments through end-to-end interactions in the crystals. The curved EFC dimer fits a tubular membrane with an approximately 600 A diameter. We subsequently proposed a model in which the curved EFC filament drives tubulation. In fact, striation of tubular membranes was observed by phase-contrast cryo-transmission electron microscopy, and mutations that impaired filament formation also impaired membrane tubulation and cell membrane invagination. Furthermore, FBP17 is recruited to clathrin-coated pits in the late stage of CME, indicating its physiological role.  相似文献   

3.
Many bacterial pathogens reorganize the host actin cytoskeleton during the course of infection, including enterohemorrhagic Escherichia coli (EHEC), which utilizes the effector protein EspF(U) to assemble actin filaments within plasma membrane protrusions called pedestals. EspF(U) activates N-WASP, a host actin nucleation-promoting factor that is normally auto-inhibited and found in a complex with the actin-binding protein WIP. Under native conditions, this N-WASP/WIP complex is activated by the small GTPase Cdc42 in concert with several different SH3 (Src-homology-3) domain-containing proteins. In the current study, we tested whether SH3 domains from the F-BAR (FCH-Bin-Amphiphysin-Rvs) subfamily of membrane-deforming proteins are involved in actin pedestal formation. We found that three F-BAR proteins: CIP4, FBP17, and TOCA1 (transducer of Cdc42-dependent actin assembly), play different roles during actin pedestal biogenesis. Whereas CIP4 and FBP17 inhibited actin pedestal assembly, TOCA1 stimulated this process. TOCA1 was recruited to pedestals by its SH3 domain, which bound directly to proline-rich sequences within EspF(U). Moreover, EspF(U) and TOCA1 activated the N-WASP/WIP complex in an additive fashion in vitro, suggesting that TOCA1 can augment actin assembly within pedestals. These results reveal that EspF(U) acts as a scaffold to recruit multiple actin assembly factors whose functions are normally regulated by Cdc42.  相似文献   

4.
Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics.  相似文献   

5.
Background information. The F‐BAR {Fes/CIP4 [Cdc42 (cell division cycle 42)‐interacting protein 4] homology and BAR (Bin/amphiphysin/Rvs)} proteins have emerged as important co‐ordinators of signalling pathways that regulate actin assembly and membrane dynamics. The presence of the F‐BAR domain is the hallmark of this family of proteins and the CIP4 (Cdc42‐interacting protein 4) was one of the first identified vertebrate F‐BAR proteins. There are three human CIP4 paralogues, namely CIP4, FBP17 (formin‐binding protein 17) and Toca‐1 (transducer of Cdc42‐dependent actin assembly 1). The CIP4‐like proteins have been implicated in Cdc42‐dependent actin reorganization and in regulation of membrane deformation events visible as tubulation of lipid bilayers. Results. We performed side‐by‐side analyses of the three CIP4 paralogues. We found that the three CIP4‐like proteins vary in their effectiveness to catalyse membrane tubulation and actin reorganization. Moreover, we show that the CIP4‐dependent membrane tubulation is enhanced in the presence of activated Cdc42. Some F‐BAR members have been shown to have a role in the endocytosis of the EGF (epidermal growth factor) receptor and this prompted us to study the involvement of the CIP4‐like proteins in signalling of the PDGFRβ [PDGF (platelet‐derived growth factor) β‐receptor]. We found that knock‐down of CIP4‐like proteins resulted in a prolonged formation of PDGF‐induced dorsal ruffles, as well as an increased PDGF‐dependent cell migration. This was most likely a consequence of a sustained PDGFRβ activation caused by delayed internalization of the receptor in the cells treated with siRNA (small interfering RNA) specific for the CIP4‐like proteins. Conclusions. Our findings show that CIP4‐like proteins induced membrane tubulation downstream of Cdc42 and that they have important roles in PDGF‐dependent actin reorganization and cell migration by regulating internalization and activity of the PDGFRβ. Moreover, the results suggest an important role for the CIP4‐like proteins in the regulation of the activity of the PDGFRβ.  相似文献   

6.
Cellular adhesion, motility, endocytosis, exocytosis and cytokinesis involve the coordinated reorganization of the cytoskeleton and of the plasma membrane. The 'Pombe Cdc15 homology' (PCH) family of adaptor proteins has recently been shown to coordinate the membrane and cytoskeletal dynamics involved in these processes by curving membranes, recruiting dynamin and controlling the architecture of the actin cytoskeleton. Mutations in PCH family members or proteins that interact with them are associated with autoinflammatory, neurological or neoplastic diseases. Here, we review the nature, actions and disease associations of the vertebrate PCH family members, highlighting their fundamental roles in the regulation of processes involving membrane-cytoskeletal interactions.  相似文献   

7.
Transducer of Cdc42-dependent actin assembly protein 1 (TOCA1) is an effector of the Rho family small G protein Cdc42. It contains a membrane-deforming F-BAR domain as well as a Src homology 3 (SH3) domain and a G protein-binding homology region 1 (HR1) domain. TOCA1 binding to Cdc42 leads to actin rearrangements, which are thought to be involved in processes such as endocytosis, filopodia formation, and cell migration. We have solved the structure of the HR1 domain of TOCA1, providing the first structural data for this protein. We have found that the TOCA1 HR1, like the closely related CIP4 HR1, has interesting structural features that are not observed in other HR1 domains. We have also investigated the binding of the TOCA HR1 domain to Cdc42 and the potential ternary complex between Cdc42 and the G protein-binding regions of TOCA1 and a member of the Wiskott-Aldrich syndrome protein family, N-WASP. TOCA1 binds Cdc42 with micromolar affinity, in contrast to the nanomolar affinity of the N-WASP G protein-binding region for Cdc42. NMR experiments show that the Cdc42-binding domain from N-WASP is able to displace TOCA1 HR1 from Cdc42, whereas the N-WASP domain but not the TOCA1 HR1 domain inhibits actin polymerization. This suggests that TOCA1 binding to Cdc42 is an early step in the Cdc42-dependent pathways that govern actin dynamics, and the differential binding affinities of the effectors facilitate a handover from TOCA1 to N-WASP, which can then drive recruitment of the actin-modifying machinery.  相似文献   

8.
Actin reorganization is important for regulation of neuronal morphology. Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important regulator of actin polymerization and also known to be strongly expressed in brain. Recently, Toca-1 (transducer of Cdc42-dependent actin assembly) has been shown to be required for Cdc42 to activate N-WASP from biochemical experiments. Toca-1 has three functional domains: an F-BAR/EFC domain at the N terminus, an HR1 at the center, and an SH3 domain at the C terminus. The F-BAR/EFC domain induces tubular invagination of plasma membrane, while Toca-1 binds both N-WASP and Cdc42 through the SH3 domain and the HR1, respectively. However, the physiological role of Toca-1 is completely unknown. Here we have investigated the neural function of Toca-1. Toca-1 is strongly expressed in neurons including hippocampal neurons in developing brain at early times. Knockdown of Toca-1 in PC12 cells significantly enhances neurite elongation. Consistently, overexpression of Toca-1 suppresses neurite elongation through the F-BAR/EFC domain with a membrane invaginating property, suggesting an implication of membrane trafficking in the neural function of Toca-1. In addition, knockdown of N-WASP, to our surprise, also enhances neurite elongation in PC12 cells, which is in clear contrast to the previous report that dominant negative mutants of N-WASP suppress neurite extension in PC12 cells. On the other hand, knockdown of Toca-1 in cultured rat hippocampal neurons enhances axon branching a little but not axon elongation, while knockdown of N-WASP enhances both axon elongation and branching. These results suggest that a vesicle trafficking regulator Toca-1 regulates different aspects of neuronal morphology from N-WASP.  相似文献   

9.
WASP family proteins are involved in cortical actin cytoskeleton reorganization. Neural Wiskott-Aldrich syndrome protein (N-WASP), a ubiquitously expressed WASP homologous protein, directly binds with Cdc42, activating Arp2/3 complex. In this study, we show that N-WASP-dependent microspike formation is inhibited by formin binding protein 11 (FBP11). Endogenous FBP11 localizes with nuclear-speckles, and co-localization of N-WASP and FBP11 was observed when they were co-expressed. Epidermal growth factor (EGF) induced actin-microspike formation in COS7 cells. However, transient expression of FBP11 suppressed N-WASP-dependent actin-microspike formation by trapping N-WASP in the nucleus. These results indicate that FBP11 regulates localization of N-WASP, thus negatively regulating the function of N-WASP in the cytoplasm.  相似文献   

10.
Dynamin associates with a variety of SH3 domain-containing molecules via a C-terminal proline-rich motif and takes part, with them, in endocytic processes. Here, we have investigated a new dynamin-associating molecule, formin-binding protein 17 (FBP17), involved in deforming the plasma membrane and in endocytosis. FBP17 formed tubular invaginations originating from the plasma membrane. Its N-terminal Fer/CIP4 homology domain, a coiled-coil domain, and a proline-rich motif were required for tubular invagination and self-assembly, by which tubular invagination might be induced. Using anti-FBP17 antibody, we detected positive immunoreactions in the testis that were restricted to the germ cells. We also detected FBP17 in the brain by immunoblotting and in situ hybridization. When COS cells expressing enhanced green fluorescent protein-tagged FBP17 were incubated with fluorescently labeled transferrin, epidermal growth factor, and cholera toxin, these molecules co-localized with FBP17-induced tubular invaginations, suggesting that FBP17 is involved in dynamin-mediated endocytosis in both a clathrin-dependent and -independent manner. These observations therefore indicate that FBP17 interacts with dynamin and regulates endocytosis by forming vesicotubular structures.  相似文献   

11.
NOSTRIN, an NO synthase binding protein, belongs to the PCH family of proteins, exposing a typical domain structure. While its SH3 domain and the C-terminal coiled-coil region cc2 have been studied earlier, the function of the N-terminal half comprising a Cdc15 domain with an FCH (Fes/CIP homology) region followed by a coiled-coil stretch cc1 is unknown. Here, we show that the FCH region is necessary and sufficient for membrane association of NOSTRIN, whereas the Cdc15 domain further specifies subcellular distribution of the protein. Thus, the FCH region and the Cdc15 domain fulfill complementary functions in subcellular targeting of NOSTRIN.  相似文献   

12.
As a death factor of T cells and Natural Killer (NK) cells, Fas Ligand (FasL) is stored in association with secretory lysosomes. Upon stimulation, these cytotoxic granules are transported to the cell membrane where FasL is exposed on the cell surface, shed or secreted. It has been noted before that the proline-rich domain within the cytosolic part of FasL is required for its vesicular association. However, the molecular interactions involved in targeting FasL to secretory lysosomes or to the plasma membrane have not been elucidated. We now identified a family of structurally related proteins that upon co-expression with FasL reallocate the death factor from a membrane to an intracellular localization. Members of this protein family are characterized by a similar domain structure and include FBP17, PACSIN1-3, CD2BP1, CIP4, Rho-GAP C1 and several hypothetical proteins. We show that all tested members of this "FCH/SH3-family" co-precipitate FasL from transfectants. The interactions strictly depend on functional SH3 domains within the FCH/SH3 proteins. Since co-expression of FasL with individual FCH/SH3 proteins dramatically alters the intracellular localization of FasL especially in non-hematopoietic cells, our data suggest that FCH/SH3 proteins might play an important role for the subcellular distribution and lysosomal association of FasL.  相似文献   

13.
Frabin, together with, at least, FGD1, FGD2, FGD3 and FGD1-related Cdc42-GEF (FRG), is a member of a family of Cdc42-specific gua-nine nucleotide exchange factors (GEFs). These proteins have multiple phosphoinositide-binding domains, including two pleckstrin homology (PH) domains and an FYVE or FERM domain. It is likely that they couple the actin cytoskeleton with the plasma membrane. Frabin associates with a specific actin structure(s) and induces the direct activation of Cdc42 in the vicinity of this structure(s), resulting in actin reorganization. Furthermore, frabin associates with a specific membrane structure(s) and induces the indirect activation of Rac in the vicinity of this structure(s), resulting in the reorganization of the actin cytoskeleton. This reorganization of the actin cytoskeleton induces cell shape changes such as the formation of filopodia and lamellipodia.  相似文献   

14.
Regulation of actin dynamics by WASP family proteins   总被引:10,自引:0,他引:10  
Rapid reorganization of the actin cytoskeleton underlies morphological changes and motility of cells. WASP family proteins have received a great deal of attention as the signal-regulated molecular switches that initiate actin polymerization. The first member, WASP, was identified as the product of a gene of which dysfunction causes the human hereditary disease Wiskott-Aldrich syndrome. There are now five members in this protein family, namely WASP, N-WASP, WAVE/Scar1, 2, and 3. WASP and N-WASP have functional and physical associations with Cdc42, a Rho family small GTPase involved in filopodium formation. In contrast, there is evidence that links the WAVE/Scar proteins with another Rho family protein, Rac, which is a regulator of membrane ruffling. All WASP family members have a VCA domain at the C-terminus through which Arp2/3 complex is activated to nucleate actin polymerization. Analyses of model organisms have just begun to reveal unexpected functions of WASP family proteins in multicellular organisms.  相似文献   

15.
Protein-tyrosine kinases and Rho GTPases regulate many cellular processes, including the reorganization and dynamics of the actin cytoskeleton. The Wiskott-Aldrich syndrome protein (WASP) and its homolog neuronal WASP (N-WASP) are effectors of the Rho GTPase Cdc42 and provide a direct link between activated membrane receptors and the actin cytoskeleton. WASP and N-WASP are also regulated by a large number of other activators, including protein-tyrosine kinases, phosphoinositides, and Src homology 3-containing adaptor proteins, and can therefore serve as signal integrators inside cells. Here we show that Cdc42 and the Src family kinase Lck cooperate at two levels to enhance WASP activation. First, autoinhibition in N-WASP decreases the efficiency (kcat/Km) of phosphorylation and dephosphorylation of the GTPase binding domain by 30- and 40-fold, respectively, and this effect is largely reversed by Cdc42. Second, Cdc42 and the Src homology 3-Src homology 2 module of Lck cooperatively stimulate the activity of phosphorylated WASP, with coupling energy of approximately 2.4 kcal/mol between the two activators. These combined effects provide mechanisms for high specificity in WASP activation by coincident GTPase and kinase signals.  相似文献   

16.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

17.
Here we identified two novel proteins denoted EH domain protein 2 (EHD2) and EHD2-binding protein 1 (EHBP1) that link clathrin-mediated endocytosis to the actin cytoskeleton. EHD2 contains an N-terminal P-loop and a C-terminal EH domain that interacts with NPF repeats in EHBP1. Disruption of EHD2 or EHBP1 function by small interfering RNA-mediated gene silencing inhibits endocytosis of transferrin into EEA1-positive endosomes as well as GLUT4 endocytosis into cultured adipocytes. EHD2 localizes with cortical actin filaments, whereas EHBP1 contains a putative actin-binding calponin homology domain. High expression of EHD2 or EHBP1 in intact cells mediates extensive actin reorganization. Thus EHD2 appears to connect endocytosis to the actin cytoskeleton through interactions of its N-terminal domain with membranes and its C-terminal EH domain with the novel EHBP1 protein.  相似文献   

18.
Actin-based, finger-like cell protrusions such as microvilli and filopodia play important roles in epithelial cells. Several proteins have been identified to regulate cell protrusion formation, which helps us to learn about the underlying mechanism of this process. FCH domain and double SH3 domains containing protein 2 (FCHSD2) belongs to the FCH and Bin-Amphiphysin-Rvs (F-BAR) protein family, containing an N-terminal F-BAR domain, two SH3 domains, and a C-terminal PDZ domain-binding interface (PBI). Previously, we found that FCHSD2 interacts with WASP/N-WASP and stimulates ARP2/3-mediated actin polymerization in vitro. In the present work, we show that FCHSD2 promotes the formation of apical and lateral cell protrusions in cultured cells. Our data suggest that FCHSD2 cooperates with CDC42 and N-WASP in regulating apical cell protrusion formation. In line with this, biochemical studies reveal that FCHSD2 and CDC42 simultaneously bind to N-WASP, forming a protein complex. Interestingly, the F-BAR domain of FCHSD2 induces lateral cell protrusion formation independently of N-WASP. Furthermore, we show that the ability of FCHSD2 to induce cell protrusion formation requires its plasma membrane-binding ability. In summary, our present work suggests that FCHSD2 cooperates with CDC42 and N-WASP to regulate cell protrusion formation in a membrane-dependent manner.  相似文献   

19.
The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily consists of proteins containing the BAR domain, the extended FCH (EFC)/FCH-BAR (F-BAR) domain, or the IRSp53-MIM homology domain (IMD)/inverse BAR (I-BAR) domain. These domains bind membranes through electrostatic interactions between the negative charges of the membranes and the positive charges on the structural surface of homo-dimeric BAR domain superfamily members. Some BAR superfamily members have membrane-penetrating insertion loops, which also contribute to the membrane binding by the proteins. The membrane-binding surface of each BAR domain superfamily member has its own unique curvature that governs or senses the curvature of the membrane for BAR-domain binding. The wide range of BAR-domain surface curvatures correlates with the various invaginations and protrusions of cells. Therefore, each BAR domain superfamily member may generate and recognize the curvature of the membrane of each subcellular structure, such as clathrin-coated pits or filopodia. The BAR domain superfamily proteins may regulate their own catalytic activity or that of their binding proteins, depending on the membrane curvature of their corresponding subcellular structures.  相似文献   

20.
Kessels MM  Qualmann B 《The EMBO journal》2002,21(22):6083-6094
Syndapins are potential links between the cortical actin cytoskeleton and endocytosis because this family of dynamin-associated proteins can also interact with the Arp2/3 complex activator N-WASP. Here we provide evidence for involvement of N-WASP interactions in receptor-mediated endocytosis. We reveal that the observed dominant-negative effects of N-WASP are dependent exclusively on the proline-rich domain, the binding interface of syndapins. Our results therefore suggest that syndapins integrate N-WASP functions in endocytosis. Both proteins co-localize in neuronal cells. Consistent with a crucial role for syndapins in endocytic uptake, co-overexpression of syndapins rescued the endocytosis block caused by N-WASP. An in vivo reconstitution of the syndapin-N-WASP interaction at cellular membranes triggered local actin polymerization. Depletion of endogenous N-WASP by sequestering it to mitochondria or by introducing anti-N-WASP antibodies impaired endocytosis. Our data suggest that syndapins may act as important coordinators of N-WASP and dynamin functions during the different steps of receptor-mediated endocytosis and that local actin polymerization induced by syndapin-N-WASP interactions may be a mechanism supporting clathrin-coated vesicle detachment and movement away from the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号