首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Proteins of the Hsp70 family of ATPases interact with a conserved domain of their J-protein partners, the J-domain, to function in numerous cellular processes. We have studied the interaction of BiP, an Hsp70 family member in the lumen of the endoplasmic reticulum, with the J-domain of Sec63p, a component of the Sec complex involved in post-translational protein translocation across the endoplasmic reticulum membrane. In a real-time solid phase binding assay, BiP binds to the immobilized Sec complex or to a fusion protein of the J-domain and glutathione S-transferase in a reaction that requires ATP hydrolysis. In the final complex, BiP is bound in the ADP form with its peptide binding pocket occupied. An intact peptide binding pocket is required for this interaction. Our experiments suggest that the activation of BiP by the J-domain involves a transient contact between these components, and that in the absence of physiological substrates, J-activated BiP binds even to the J-proteins themselves.  相似文献   

2.
BiP is an Hsp70 homologue found in the endoplasmic reticulum of eukaryotic cells. Like other Hsp70 chaperones, BiP interacts with its substrate proteins in an ATP-dependent manner. The functional analysis has so far been performed mainly with short, synthetic peptides. Here, we present an experimental system that allows to study the partial reactions of the BiP chaperone cycle for a natural substrate protein domain in its soluble, stably unfolded conformation. This unfolded antibody domain forms a binary complex with BiP in the absence of ATP. The dissociation of the BiP dimer seems to be the rate-limiting step in this reaction. The BiP-C(H)3 complexes dissociate rapidly in the presence of ATP. The affinity for BiP-binding peptides and the non-native antibody domain was determined to be similar, suggesting that only the peptide binding site is involved in these interactions. Furthermore, these results imply that, also in the context of the antibody domain, an extended peptide sequence is recognized. However, the accessibility of the BiP-binding site in the non-native protein seems to influence the kinetics of complex formation.  相似文献   

3.
4.
BiP/GRP78 is an essential member of the HSP70 family that resides in the lumen of the endoplasmic reticulum. In yeast, BiP/GRP78 is encoded by the KAR2 gene. A temperature sensitive mutation was isolated in KAR2 and found to cause a rapid block in protein secretion. Secretory precursors of a number of proteins (invertase, carboxypeptidase Y, alpha-factor, and BiP) accumulated that were characteristic of a block in translocation into the lumen of the ER. Protease protection experiments confirmed that the precursors accumulated on the cytoplasmic side of the ER membrane. Moreover, depletion of wild-type KAR2 protein also resulted in a block in translocation of secretory proteins. These results implicate BiP/GRP78 function in the continued translocation of proteins into the lumen of the ER.  相似文献   

5.
The maize b-70 protein is an endoplasmic reticulum protein overproduced in the floury-2 (fl2) endosperm mutant. The increase in b-70 levels in fl2 plants occurs during seed maturation and is endosperm specific. We have used amino acid sequence homology to identify b-70 as a homolog of mammalian immunoglobulin binding protein (BiP). Purified b-70 fractions contain two 75-kilodalton polypeptides with pl values of 5.3 and 5.4. Both 75-kilodalton polypeptides share several properties with BiP, including the ability to bind ATP and localization within the lumen of the endoplasmic reticulum. In addition, both b-70 polypeptides can be induced in maize cell cultures with tunicamycin treatment. Like BiP, the pl 5.3 form of b-70 is post-translationally modified by phosphorylation and ADP-ribosylation. However, modification of the pl 5.4 species was not detected in vitro or in vivo. Although the b-70 gene is unlinked to fl2, b-70 overproduction is positively correlated with the fl2 gene and is regulated at the mRNA level. In contrast, the fl2 allele negatively affects the accumulation of the major endosperm storage proteins. The physical similarity of b-70 to BiP and its association with abnormal protein accumulation in fl2 endoplasmic reticulum may reflect a biological function to mediate protein folding and assembly in maize endosperm.  相似文献   

6.
BiP and PDI cooperate in the oxidative folding of antibodies in vitro   总被引:9,自引:0,他引:9  
Immunoglobulin heavy chain binding protein (BiP), a member of the Hsp70 chaperone family, and the oxidoreductase protein-disulfide isomerase (PDI) play an important role in the folding and oxidation of proteins in the endoplasmic reticulum. However, it was not clear whether both cooperate in this process. We show here that BiP and PDI act synergistically in the in vitro folding of the denatured and reduced Fab fragment. Several ATP-dependent cycles of binding, release, and rebinding of the unfolded antibody chains by BiP are required for efficient reactivation. Our data suggest that in the absence of BiP unfolded antibody chains collapse rapidly upon refolding, rendering cysteine side chains inaccessible for PDI. BiP binds the unfolded polypeptide chains and keeps them in a conformation in which the cysteine residues are accessible for PDI. These findings support the idea of a network of folding helper proteins in the endoplasmic reticulum, which makes this organelle a dedicated protein-processing compartment.  相似文献   

7.
HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the alpha-helical homodimeric secretory cytokine interferon-gamma (IFN-gamma). We screened solid-phase peptide libraries from human and mouse IFN-gamma to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN-gamma dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the alpha-helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-gamma, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.  相似文献   

8.
P58IPK is one of the endoplasmic reticulum- (ER-) localised DnaJ (ERdj) proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD) motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding.  相似文献   

9.
J V Anderson  Q B Li  D W Haskell    C L Guy 《Plant physiology》1994,104(4):1359-1370
The 70-kD heat-shock proteins (HSP70s) are encoded by a multigene family in eukaryotes. In plants, the 70-kD heat-shock cognate (HSC70) proteins are located in organellar and cytosolic compartments of cells in most tissues. Previous work has indicated that HSC70 proteins of spinach (Spinacia oleracea) are actively synthesized during cold-acclimating conditions. We have isolated, sequenced, and characterized cDNA and genomic clones for the endoplasmic reticulum (ER) luminal HSC70 protein (immunoglobulin heavy chain-binding protein; BiP) of spinach. The spinach ER-luminal HSC70 is a constitutively expressed gene consisting of eight exons. Spinach BiP mRNA appears to be up-regulated during cold acclimation but is not expressed during water stress or heat shock. In contrast to the differential regulation of mRNA, the ER-luminal HSC70 protein levels remain constant in response to various environmental stresses. Two other members of the spinach 70-kD heat-shock (HS70) multigene family also show differential expression in response to a variety of environmental stresses. A constitutively expressed cytosolic HSC70 protein in spinach appears also to be up-regulated in response to both cold-acclimating and heat-shock treatments. Spinach also contains a cold-shock-induced HS70 gene that is not expressed during heat shock or water stress. Since HSP70s are considered to be involved with the chaperoning and folding of proteins, the data further support the concept that they may be important for maintaining cellular homeostasis and proper protein biogenesis during cold acclimation of spinach.  相似文献   

10.
A Otteken  P L Earl    B Moss 《Journal of virology》1996,70(6):3407-3415
Monoclonal antibodies (MAbs) that bind linear or conformational epitopes on monomeric or oligomeric human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins were screened for their recognition of maturational intermediates. On the basis of reactivities with gp160 at different times after pulse-labeling, the MAbs were sorted into groups that exhibited binding which was immediate and constant, immediate but transient, delayed, late, or very late. This grouping was consistent with the selectivity of the MAbs for structural features of gp160. Thus, a MAb to the V3 loop reacted with envelope proteins at all times, in accord with the relative conformational independence and accessibility of the epitope. Several MAbs that preferentially react with monomeric gp160 exhibited diminished binding after the pulse. A 10-min tag occurred before gp160 reacted with conformational MAbs that inhibited CD4 binding. The availability of epitopes for other conformational MAbs, including some that react equally with monomeric and oligomeric gp160 and some that react better with oligomeric forms, was half-maximal in 30 min and closely followed the kinetics of gp160 oligomerization. Remarkably, there was a 1- to 2-h delay before gp160 reacted with stringent oligomer-specific MAbs. After 4 h, approximately 20% of the gp160 was recognized by these MAbs. Epitopes recognized by monomerspecific or CD4-blocking MAbs but not by oligomer-dependent MAbs were present on gp160 molecules associated with the molecular chaperone BiP/GRP78. MAbs with a preference for monomers reacted with recombinant or HIV-1 envelope proteins in the endoplasmic reticulum, whereas the oligomer-specific MAbs recognized them in the Golgi complex. Additional information regarding gp160 maturation and intracellular trafficking was obtained by using brefeldin A, dithiothreitol, and a low temperature.  相似文献   

11.
Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.  相似文献   

12.
13.
Glucose-regulated protein (GRP78)/BiP, a major chaperone in the endoplasmic reticulum, is recently discovered to be preferably expressed on the surface of stressed cancer cells, where it regulates critical oncogenic signaling pathways and is emerging as a target for anti-cancer therapy while sparing normal organs. However, because GRP78 does not contain classical transmembrane domains, its mechanism of transport and its anchoring at the cell surface are poorly understood. Using a combination of biochemical, mutational, FACS, and single molecule super-resolution imaging approaches, we discovered that GRP78 majorly exists as a peripheral protein on plasma membrane via interaction with other cell surface proteins including glycosylphosphatidylinositol-anchored proteins. Moreover, cell surface GRP78 expression requires its substrate binding activity but is independent of ATP binding or a membrane insertion motif conserved with HSP70. Unexpectedly, different cancer cell lines rely on different mechanisms for GRP78 cell surface translocation, implying that the process is cell context-dependent.  相似文献   

14.
In the unfolded protein response, the type I transmembrane protein Ire1 transmits an endoplasmic reticulum (ER) stress signal to the cytoplasm. We previously reported that under nonstressed conditions, the ER chaperone BiP binds and represses Ire1. It is still unclear how this event contributes to the overall regulation of Ire1. The present Ire1 mutation study shows that the luminal domain possesses two subregions that seem indispensable for activity. The BiP-binding site was assigned not to these subregions, but to a region neighboring the transmembrane domain. Phenotypic comparison of several Ire1 mutants carrying deletions in the indispensable subregions suggests these subregions are responsible for multiple events that are prerequisites for activation of the overall Ire1 proteins. Unexpectedly, deletion of the BiP-binding site rendered Ire1 unaltered in ER stress inducibility, but hypersensitive to ethanol and high temperature. We conclude that in the ER stress-sensory system BiP is not the principal determinant of Ire1 activity, but an adjustor for sensitivity to various stresses.  相似文献   

15.
The binding protein (BiP; a member of the heat-shock 70 family) is a major chaperone of the endoplasmic reticulum (ER). Interactions with BiP are believed to inhibit unproductive aggregation of newly synthesized secretory proteins during folding and assembly. In vitro, BiP has a preference for peptide sequences enriched in hydrophobic amino acids, which are expected to be exposed only in folding and assembly intermediates or in defective proteins. However, direct information regarding sequences recognized in vivo by BiP on real proteins is very limited. We have shown previously that newly synthesized monomers of the homotrimeric storage protein phaseolin associate with BiP and that phaseolin trimerization in the ER abolishes such interactions. Using different phaseolin constructs and green fluorescent protein (GFP) fusion proteins, we show here that one of the two alpha-helical regions of polypeptide contact in phaseolin trimers (35 amino acids located close to the C terminus and containing three potential BiP binding sites) effectively promotes BiP association with phaseolin and with secretory GFP fusions expressed in transgenic tobacco or in transfected protoplasts. We also show that overexpressed BiP transiently sequesters phaseolin polypeptides. We conclude that one of the regions of monomer contact is a BiP binding determinant and suggest that during the synthesis of phaseolin, the association with BiP and trimer formation are competing events. Finally, we show that the other, internal region of contact between monomers is necessary for phaseolin assembly in vivo and contains one potential BiP binding site.  相似文献   

16.
17.
Yang Y  Li Z 《Molecules and cells》2005,20(2):173-182
Heat shock protein gp96 is an endoplasmic reticulum chaperone, belonging to the HSP90 family. The function of gp96 as a molecular chaperone was discovered more than 10 years ago, but its importance has been overshadowed by the brilliance of its role in immune responses. It is now clear that gp96 is instrumental in the initiation of both the innate and adaptive immunity. Recently, the roles of gp96 in protein homeostasis, as well as in cell differentiation and development, are beginning to draw more attention due to rapid development in the structural study of HSP90 and some surprising new discoveries from genetic studies of gp96. In this review, we focus on the aspect of gp96 as an ER molecular chaperone in protein maturation, peptide binding and the regulation of its activity.  相似文献   

18.
19.
We identified a mammalian BiP-associated protein, BAP, using a yeast two-hybrid screen that shared low homology with yeast Sls1p/Sil1p and mammalian HspBP1, both of which regulate the ATPase activity of their Hsp70 partner. BAP encoded an approximately 54-kDa protein with an N-terminal endoplasmic reticulum (ER) targeting sequence, two sites of N-linked glycosylation, and a C-terminal ER retention sequence. Immunofluorescence staining demonstrated that BAP co-localized with GRP94 in the endoplasmic reticulum. BAP was ubiquitously expressed but showed the highest levels of expression in secretory organ tissues, a pattern similar to that observed with BiP. BAP binding was affected by the conformation of the ATPase domain of BiP based on in vivo binding studies with BiP mutants. BAP stimulated the ATPase activity of BiP when added alone or together with the ER DnaJ protein, ERdj4, by promoting the release of ADP from BiP. Together, these data demonstrate that BAP serves as a nucleotide exchange factor for BiP and provide insights into the mechanisms that control protein folding in the mammalian ER.  相似文献   

20.
A novel subfamily of Hsp70s in the endoplasmic reticulum   总被引:6,自引:0,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号