首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine T cell lines responsive to the protozoan parasite Trypanosoma cruzi were generated in vitro by stimulating hyperimmune C57BL/6 lymphoid cells with trypomastigote stage antigen. A spleen-derived line designated ST1 and eight clones derived from ST1 were characterized. All lines bear the surface phenotype Thy-1.2+, Ly-1.2+, 2.2- and respond to T. cruzi antigen only in the presence of antigen-presenting cells matched at the I-A subregion of the H2 locus. Clonal specificity analyses indicated that these T. cruzi-selected T cells are species specific and recognize antigenic determinants that are expressed predominantly in the trypomastigote stage. On the basis of their distinct patterns of response to a panel of different T. cruzi strains, clones recognizing strain-specific, shared, or common determinants were identified. Functional studies indicated that ST1 and some but not all of the clones are capable of expressing antigen-specific T helper function in vitro and in vivo. In addition, co-incubation of T. cruzi-specific T cells with cultured T. cruzi-infected syngeneic macrophages led to the dose-dependent destruction of intracellular parasites. Most notably, ST1 and several of the cloned T. cruzi-specific T cell lines were able to passively protect syngeneic recipients from lethal T. cruzi challenge infection. Efforts to identify the parasite antigens recognized by these T cell lines, particularly the protective clones, are currently in progress.  相似文献   

2.
The biological characterization of the Trypanosoma cruzi clone Dm 28c in terms of its growth in LIT medium, cell-cycle, infectivity to mice and interaction with professional and non-professional phagocytic cells shows that it behaves as a bona fide T. cruzi representant. The biological properties of this myotropic clone do not change according to the origin of the trypomastigote forms (i. e., from triatomines, infected mice, cell-culture or from the chemically defined TAUP and TAU3AAG media). In addition Dm 28c metacyclic trypomastigotes from TAU3AAG medium display a high infectivity level to fibroblasts and muscle cells. Experiments on binding of cationized ferritin to trypomastigotes surface show the existence of cap-like structures of ferritin in regions near the kinetoplast, however the nature and role of these anionic sites remain to be determined. The results indicate that metacyclic trypomastigotes from the Dm 28c clone obtained under chemically defined conditions reproduce the biological behaviour of T. cruzi, rendering this system very suitable for the study of cell-parasite interactions and for the isolation of trypanosome relevant macromolecules.  相似文献   

3.
High metacyclogenesis was induced when freshly-isolated Trypanosoma rangeli from humans were grown in a modified liver-infusion-tryptose medium and transferred into the medium overlaid on mouse fibroblasts at 27 degrees C in a 5% CO2 atmosphere. Such in vitro-generated metacyclic trypomastigotes could induce a significantly high and constant parasitemia in both ICR and SCID mice for a period of about a week but thereafter the parasitemia gradually decreased. Histological examination could not detect any tissue-forms of T. rangeli in various organs of SCID mice. On the other hand, two long-maintained stocks of T. rangeli produced lower metacyclogenesis and only latent parasitemia in both strains of mice. When these populations were incubated in fibroblast cultures at 37 degrees C in a 5% CO2 atmosphere, only trypomastigotes survived for two to three weeks without proliferation, while other forms, mainly epimastigotes, soon began to swell and degenerate. Electron microscopy showed that most surviving trypomastigotes had the basket-like conformation of the kinetoplasts. This is characteristic of the non-dividing trypomastigote stage of T. cruzi, and suggests that T. rangeli trypomastigotes may survive long periods in the blood without proliferation.  相似文献   

4.
Incubation of Trypanosoma cruzi epimastigotes with Triatoma infestans intestinal homogenate leads to differentiation to the metacyclic trypomastigote. Features of this interaction are presented. The morphogenetic mechanism was triggered almost at once; for the minimum interaction period assayed (15 min), the degree of differentiation achieved in Grace medium by Day 6 was 70.0 +/- 9.0%. Longer interaction periods failed to improve differentiation. The morphogenesis became irreversible at 4 hr after interaction. Epimastigotes incubated for 4 hr with T. infestans intestinal homogenate and then washed reached significant differentiation, while those washed before this time failed to do so. Treatment of epimastigotes with albumin improved the experimental conditions thereby hastening morphogenesis, the same percentage of metacyclics occurring in only 4 days. The factors capable of triggering differentiation were adsorbed by T. cruzi epimastigotes, as expected, but also by Leishmania mexicana and, to a lesser degree, by sheep red blood cells. Once the morphogenetic mechanism had been triggered following interaction of epimastigotes with intestinal homogenate for 15 min, metacyclic forms developed when parasites were transferred to Grace but not to other media. Treatment of epimastigotes with trypsin abolished their capacity to differentiate, which was completely reversed following a 5 hr incubation in LIT medium.  相似文献   

5.
Platelet-activating factor is a phospholipid mediator that exhibits a wide variety of physiological and pathophysiological effects, including induction of inflammatory response, chemotaxis and cellular differentiation. Trypanosoma cruzi, the etiological agent of Chagas' disease, is transmitted by triatomine insects and while in the triatomine midgut the parasite differentiates from a non-infective epimastigote stage into the pathogenic trypomastigote metacyclic form. We have previously demonstrated that platelet activating factor triggers in vitro cell differentiation of T. cruzi. Here we show a platelet activating factor-like activity isolated from lipid extract of T. cruzi epimastigotes incubated in the presence of [14C]acetate. Trypanosoma cruzi-platelet activating factor-like lipid induced the aggregation of rabbit platelets, which was prevented by platelet activating factor-acetylhydrolase. Mouse macrophage infection by T. cruzi was stimulated when epimastigotes were kept for 5 days in the presence of T. cruzi-platelet activating factor, before interacting with the macrophages. The differentiation of epimastigotes into metacyclic trypomastigotes was also triggered by T. cruzi-platelet activating factor. These effects were abrogated by a platelet activating factor antagonist, WEB 2086. Polyclonal antibody raised against mouse platelet activating factor receptor showed labelling for T. cruzi epimastigotes using immunoblotting and immunofluorescence assays. These data suggest that T. cruzi contain the components of an autocrine platelet activating factor-like ligand-receptor system that modulates cell differentiation towards the infectious stage.  相似文献   

6.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic and tissue-culture trypomastigotes when compared with control Vero cells. Kinetic studies of trypomastigote transfer indicated that metacyclic trypomastigotes parasitophorous vacuoles are more efficiently fused to C. burnetii vacuoles. The higher tissue-culture trypomastigote hemolysin and transialidase activities appear to facilitate their faster escape from the parasitophorous vacuole. Sialic acid deficient Lec-2 cells facilitate the escape of both forms. Endosomal-lysosomal sequential labelling with EEA1, LAMP-1, and Rab7 of the parasitophorous vacuoles formed during the entry of each infective form revealed that the phagosome maturation processes are also distinct. Measurements of C. burnetii vacuolar pH disclosed a marked preference for trypomastigote fusion with more acidic rickettsia vacuoles. Our results thus suggest that intravacuolar pH modulates the traffic of trypomastigote parasitophorous vacuoles in these doubly infected cells.  相似文献   

7.
Investigation of protease activities during the transformation of Trypanosoma cruzi epimastigotes into metacyclic trypomastigoes (metacyclo-genesis) revealed three major components with apparent molecular weights of 65, 52, and 40 kDa. The 65-kDa protease is a metacyclic trypomastigote stage-specific protease with an isoelectric point of 5.2 whose activity is inhibited by 1,10-phenanthroline, suggesting that it might be a metalloprotease. The 52-kDa component is also a metalloprotease which is constitutively expressed in epimastigotes and metacyclic trypomastigoes. On the other hand, the 40-kDa component is apparently made up of several isoforms of a cysteine protease which is expressed in much higher levels in epimastigotes than in metacyclic trypomastigote forms. The fact that the 65- and 40-kDa proteases are developmentally regulated suggests that proteases might be important for T. cruzi differentiation. Accordingly, T. cruzi metacyclogenesis is blocked by metallo- and cysteine-protease inhibitors.  相似文献   

8.
Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU) medium at 37 degrees C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a) T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b) the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.  相似文献   

9.
Thirty-one Trypanosoma cruzi isolates from Chile, Peru, and Bolivia were studied in their capacity to differentiate in vitro from epimastigotes to metacyclic trypomastigotes on TAU-3AAG medium. Zymodeme 1 parasites displayed the best level of differentiation, which ranges from 60 to 90% depending on the isolate. Zymodeme 2 parasites exhibited highly heterogenous differentiation rates. This differentiation method permits the obtention of large amounts of metacyclic trypomastigotes from zymodeme 1 parasites. Metacyclic trypomastigotes obtained in vitro were infective to nude Balb/c hybrid mice. Zymodeme 1 parasites produced high parasitemias in this murine model; in contrast, zymodeme 2 parasites displayed lower parasitemias. Of a total of 27 T. cruzi isolates, 20 proved to be infective to mice, 12 gave enough parasites for further studies, and 8 of these were used for biological characterization. Results are compared with the infective clone Dm28 and Tulahuén strains maintained since 1954 in mice.  相似文献   

10.
11.
A chemically defined in vitro differentiating condition was used to study the potential role of cyclic AMP (cAMP) and adenylate cyclase activators on the transformation of Trypanosoma cruzi epimastigotes to the infective metacyclic trypomastigotes (metacyclogenesis). It was observed that both addition of cAMP analogs or adenylate cyclase activators to the differentiating medium stimulated the transformation of epimastigotes to metacyclic trypomastigotes. These results were further corroborated by showing that inhibitors of cAMP phosphodiesterase were stimulatory while activators of this enzyme inhibited the metacyclogenesis process. On the other hand, inhibitors of calmodulin inhibited the transformation of epimastigotes to metacyclic trypomastigotes, suggesting that T. cruzi adenylate cyclase might be activated by calmodulin. In addition, the results strongly suggest that guanine nucleotide binding proteins are involved in T. cruzi adenylate cyclase activation. This system may be useful for studying cell differentiation mechanisms in eukaryotes.  相似文献   

12.
Coxiella burnetii, the etiological agent of Q fever, is an obligate intracellular bacterium that resides within acidified vacuoles with secondary lysosomal characteristics. Infective stages of Trypanosoma cruzi, the causative agent of Chagas' disease, actively invade a wide variety of cells, a process followed by lysosomal recruitment. Recently, we have investigated and characterized early events that occur in Vero cells persistently colonized with C. burnetii when doubly infected with T. cruzi trypomastigote forms. Kinetic studies of trypomastigote transfer indicated that parasitophorous vacuoles (PV) of metacyclic trypomastigotes are rapidly and efficiently fused to C. burnetii vacuoles. Based on these observations we have investigated the behavior of metacyclic trypomastigotes within C. burnetii vacuoles beyond 12 h of co-infection inside Vero cells. Using indirect immunofluorescence with MAb against different developmental stages, it was possible to follow the T. cruzi differentiation process within C. burnetii vacuoles after up to 96 h post-invasion. We observed that metacyclic trypomastigotes began to differentiate after 12 h of infection, and 24 h later amastigotes were the prevailing forms within C. burnetii vacuoles. T. cruzi amastigote replication within C. burnetii vacuoles was confirmed using video and time-lapse confocal microscopy and around 36 h of co-infection, cytokinesis took about 70 min to occur. After 72 h, we observed that amastigote forms seemed to escape from C. burnetii vacuoles. Labeling of amastigotes within C. burnetii vacuoles using a polyclonal antibody to C9 complement protein suggested that TcTOX (T. cruzi hemolysin) could play a role in parasite escape from C. burnetii. We concluded that T. cruzi has an outstanding adaptation capability and can survive within a hostile milieu such as C. burnetii vacuoles.  相似文献   

13.
The study of the expression of a Trypanosoma cruzi gene encoding a cytoplasmic repetitive antigen (CRA) during the metacyclogenesis process shows that this gene is not expressed in metacyclic trypomastigote forms of the parasite. However, a slight increase in CRA expression was observed following the nutritional stress of epimastigotes which precedes T. cruzi metacyclogenesis in vitro. The comparison of the expression of CRA in different T. cruzi strains shows that this gene is highly polymorphic: some strains display one and others display two polypeptides reacting with a CRA antiserum. The comparison of T. cruzi G-49 strain and Dm 28c clone shows that they display rather different Northern and Southern blot profiles when probed with a clone corresponding to the repetitive region of the CRA gene. A similar polymorphism was also observed for the gene encoding a flagellar repetitive antigen, suggesting that gene polymorphism might be a common feature of many T. cruzi genes.  相似文献   

14.
15.
Metacyclic forms of Trypanosoma cruzi isolated from the hindgut of infected insect vectors (Rhodnius prolixus) were found to be immunologically cross-reactive with cultured epimastigote, amastigote, and metacyclic stages of the parasite as well as with bloodstream trypomastigote forms by direct agglutination and indirect immunofluorescence techniques. Sera specific for each of these forms of the parasite systematically yielded maximal antibody titers when measured against the homologous antigen, indicating that antigenic determinants are shared by all of the developmental forms used in this work. Supporting this conclusion were the significant reductions in anti-insect-derived metacyclic antibody titer caused by absorption with any of the other life stages of T. cruzi. These results are relevant to the potential use of laboratory-grown forms of T. cruzi in vaccination against a natural infection with this parasite.  相似文献   

16.
Differential display of mRNAs from Trypanosoma cruzi epimastigote and metacyclic trypomastigote stages showed several mRNA species differing in their expression level. The cDNA corresponding to one of these mRNAs was used as a probe in Northern blots and identified a RNA product of 2.6 kb with an expression level eight or more times higher in trypomastigotes than in epimastigotes. This probe was also used to screen a genomic library of T. cruzi CL Brener clone prepared in lambda FIX. A clone of about 15 kb was selected that, after partial sequencing, revealed an open reading frame of 688 amino acids encoding a deduced protein with similarity to RNA helicases of the DEAD-box gene family. The presence of the eight conserved motifs characteristic of the DEAD protein family was observed in the T. cruzi sequence, indicating that it corresponds to a putative RNA helicase gene, which we named HelTc. Southern blot analysis indicated that HelTc is a single-copy gene. Pulsed-field gel electrophoresis separation of chromosomes of several isolates of T. cruzi showed that this gene was localized in one or two chromosomal bands.  相似文献   

17.
We have developed an improved procedure for isolating and purifying the metacyclic trypomastigote form of Trypanosoma cruzi from infected Triatoma infestans. The procedure was simple, did not require time-consuming removal of the insect gut, and gave a good recovery of metacyclics. Purification involved centrifugal flotation of the parasites in Percoll followed by diethylaminoethyl cellulose column chromatography. The resulting purified metacyclics exhibited no loss of infectivity when assayed in mice as compared to metacyclics taken directly from the insects.  相似文献   

18.
During differentiation of the dividing epimastigote to the non-dividing metacyclic trypomastigote form of the parasitic protozoan Trypanosoma cruzi there is a marked reduction in the rate of synthesis of the major proteins alpha- and beta-tubulin. Our results indicate that the control of synthesis of these proteins during the differentiation event is exerted at the level of alpha- and beta-tubulin mRNA accumulation.  相似文献   

19.
Trypanosoma cruzi, an obligate intracellular protozoan parasite, exhibits developmental regulation of virulence. Although both noninfective epimastigote and infective trypomastigote stages of T. cruzi enter phagocytic cells via the formation of a parasitophorous vacuole (PV), only the latter developmental stages survive ingestion and perpetuate the infection. To determine whether the membrane composition of PV surrounding these different stages might contribute to differences in the outcome of infection, we identified selected membrane constituents by immunofluorescence and intracellular radioiodination, and studied their incorporation into PV. Complement receptors (CR3) are incorporated preferentially into the PV membrane surrounding serum-opsonized epimastigotes but not culture-derived metacyclic trypomastigotes. FcR are not preferentially incorporated into PV membranes unless epimastigotes or culture-derived metacyclic trypomastigotes are opsonized with anti-T. cruzi antibody. PV surrounding either parasite stage contain beta 1 integrins and lysosomal membrane glycoproteins (lgp). These results indicate that the plasma membrane glycoproteins incorporated into the surrounding PV membrane differ depending upon the stage of parasite being internalized, and that these differences reflect, at least in part, selective ligation of cell surface receptors mediating uptake. Furthermore, they imply that although virulent trypomastigote stages may avoid host cell uptake by conventional phagocytic receptors, i.e., CR3 or FcR, they do not escape fusion with an lgp-containing vacuole where they could still be exposed to lysosomal antimicrobial mechanisms.  相似文献   

20.
The participation of ADP-ribosyltransferase in Trypanosoma cruzi differentiation to the metacyclic stage was evaluated by analyzing morphogenesis blockage by specific enzyme inhibitors: benzamide, 3-aminobenzamide, theophylline, and nicotinamide. In vitro assays showed a statistically significant reduction in the number of metacyclic forms only when any one of the four inhibitors was added during the period of interaction between epimastigote and Triatoma infestans intestinal homogenate or when present throughout the subsequent culture period in Grace's medium. When nicotinamide or benzamide was present during both interaction and culture period, morphogenesis was virtually abolished (less than or equal to 2%). In the in vivo assays, mice inoculated with parasites obtained from the insect vectors fed with trypomastigote-infected blood containing one of the four enzyme inhibitors developed lower parasitemias and showed longer survival in every case, compared with the respective controls. These findings suggest ADP-ribosyltransferase participation in T. cruzi differentiation both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号