首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800–1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences.  相似文献   

2.
We report the cloning and analysis of a sample representative of all P-elements from Scaptomyza pallida. We have compared four independent stocks of this species, using Southern blot and in situ hybridization experiments to examine the number, structure, and distribution of P-elements. All four stocks give similar results: they contain about 15 P-elements including three to four full-length elements as well as shorter, deleted elements. All elements are divergent from one another and most of them appear to be immobile since they are located at identical positions in the genomes of independent stocks. These data indicate that P-elements are old components of the S. pallida genome. Moreover, the presence of P-sequences in species closely related to S. pallida suggests that they have had a long evolutionary history in the Scaptomyza genus. We have also found that most P-elements of S. pallida are located in the pericentromeric heterochromatin. This corroborates other studies which show that in the course of their evolution, transposable elements tend to accumulate into pericentromeric heterochromatin, where they become immobile and noncoding. Correspondence to: M. Simonelig  相似文献   

3.
The intragenomic location of the elements of the I, G, jockey, F, and Doc transposon families has been studied by the Southern blot analysis, in 12 laboratory Drosophila melanogaster stocks. Elements located in euchromatin, heterochromatin, and on the Y chromosome are identified, and their stability has been assessed by comparing the autoradiographs detected in different stocks and analysis of individual flies. Evidence is shown suggesting that preferential location in euchromatin or heterochromatin and the distribution within heterochromatin are distinctive of transposon families. Elements located in heterochromatin can be unstable. These results are discussed in the context of the relationship between transposable elements and the host genome. Received: 21 August 1996 / Accepted: 24 March 1997  相似文献   

4.
Patrizio Dimitri 《Genetica》1997,100(1-3):85-93
Several families of transposable elements (TEs), most of them belonging to the retrotransposon catagory, are particularly enriched in Drosophila melanogaster constitutive heterochromatin. The enrichment of TE-homologous sequences into heterochromatin is not a peculiar feature of the Drosophila genome, but appears to be widespread among higher eukaryotes. The constitutive heterochromatin of D. melanogaster contains several genetically active domains; this raises the possibility that TE-homologous sequences inserted into functional heterochromatin compartments may be expressed. In this review, I present available data on the genetic and molecular organization of D. melanogaster constitutive heterochromatin and its relationship with transposable elements. The implications of these findings on the possible impact of heterochromatic TEs on the function and evolution of the host genome are also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Transposable elements (TEs) are DNA segments that can mediate or cause movement within genomes. We performed a comprehensive, whole-genome analysis of annotated TEs in rice (Oryza sativa L.) and Arabidopsis thaliana, focusing on their expression (mRNA data) and silencing (small RNA data), and we compared these data with annotated genes that are not annotated as transposons. TEs demonstrated higher levels of antisense mRNA expression in comparison to non-TE genes. The majority of the TEs were silenced, as demonstrated by higher levels of small RNAs and a lack of mRNA MPSS data. When TEs were expressed, their activity was usually limited to just one or a few of the mRNA libraries. When we examined TE expression at the whole-genome level and across the complete mRNA dataset, we observed that most activity was contributed by a few highly expressed transposable elements. These TEs were characterized by their low copy number and few matching small RNAs. Our results help define the relationship between gene expression and gene silencing for TEs, and indicate that TE silencing can impact neighboring genes, perhaps via a mechanism of heterochromatin formation and spreading. These data may be used to define active TEs and families of transposable elements that continue to shape plant genomes.  相似文献   

6.
7.
8.
Transposable elements (TEs) play a fundamental role in the evolution of genomes. In Drosophila they are disproportionately represented in regions of low recombination, such as in heterochromatin. This pattern has been attributed to selection against repeated elements in regions of normal recombination, owing to either (1) the slightly deleterious position effects of TE insertions near or into genes, or (2) strong selection against chromosomal abnormalities arising from ectopic exchange between TE repeats. We have used defective non-long-terminal repeat (LTR) TEs that are "dead-on-arrival" (DOA) and unable to transpose in order to estimate spontaneous deletion rates in different constituents of chromatin. These elements have previously provided evidence for an extremely high rate of spontaneous deletion in Drosophila as compared with mammals, potentially explaining at least part of the differences in the genome sizes in these organisms. However, rates of deletion could be overestimated due to positive selection for a smaller likelihood of ectopic exchange. In this article, we show that rates of spontaneous deletion in DOA repeats are as high in heterochromatin and regions of euchromatin with low recombination as they are in regions of euchromatin with normal recombination. We have also examined the age distribution of five non-LTR families throughout the genome. We show that there is substantial variation in the historical pattern of transposition of these TEs. The overrepresentation of TEs in the heterochromatin is primarily due to their longer retention time in heterochromatin, as evidenced by the average time since insertion. Fragments inserted recently are much more evenly distributed in the genome. This contrast demonstrates that the accumulation of TEs in heterochromatin and in euchromatic regions of low recombination is not due to biased transposition but by greater probabilities of fixation in these regions relative to regions of normal recombination.  相似文献   

9.
The bulk of the eukaryotic genome is composed of families of repetitive sequences that are genetically silent and exhibit various types of instability. Transposable elements (TEs) are particularly common in heterochromatic regions of the genome - a location where TEs might do less damage to their host. Recent advances suggest that the relationship between TEs and heterochromatin might not be quite so straightforward.  相似文献   

10.
To enhance our understanding of the organization of the genome and chromosome evolution of cichlid fish species, we have isolated and physically mapped onto the chromosomes the transposable elements (TEs) Rex1, Rex3 and Rex6, which are conserved in teleost fish, in the chromosomes of African and South American cichlid species. The physical mapping of different Rex elements showed that they are primarily compartmentalized in the pericentromeric heterochromatic regions, although dispersed or clustered signals in euchromatic regions were also observed. The presence of TEs in heterochromatin can be correlated with their role in the structure and organization of heterochromatic areas (such as centromeres) or with the lower selective pressure that act on these gene-poor regions. The Rex elements were also concentrated in the largest chromosome pair of the Nile tilapia, Oreochromis niloticus. This chromosome pair is supposed to have originated by fusions, demonstrating the possible involvement of TEs with chromosome rearrangements. Besides general patterns of chromosomal distribution, comparative analysis suggests that Rex elements could differ in their chromosomal distribution among different fish groups or species and that intrinsic aspects of the genomes could influence the spread, accumulation or elimination of TEs.  相似文献   

11.
The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet important, element for the evolutionary dynamics of TEs.  相似文献   

12.
Genome size varies considerably between species, and transposable elements (TEs) are known to play an important role in this variability. However, it is far from clear whether TEs are involved in genome size differences between populations within a given species. We show here that in Drosophila melanogaster and Drosophila simulans the size of the genome varies among populations and is correlated with the TE copy number on the chromosome arms. The TEs embedded within the heterochromatin do not seem to be involved directly in this phenomenon, although they may contribute to differences in genome size. Furthermore, genome size and TE content variations parallel the worldwide colonization of D. melanogaster species. No such relationship exists for the more recently dispersed D. simulans species, which indicates that a quantitative increase in the TEs in local populations and fly migration are sufficient to account for the increase in genome size, with no need for an adaptation hypothesis.  相似文献   

13.
We have investigated at the molecular level four cases in which D. melanogaster middle repetitive DNA probes consistently hybridized to a particular band on chromosomes sampled from a D. melanogaster natural population. Two corresponded to true fixations of a roo and a Stalker element, and the others were artefacts of the in situ hybridization technique caused by the presence of genomic DNA flanking the transposable elements (TEs) in the probes. The two fixed elements are located in the beta-heterochromatin (20A and 80B, respectively) and are embedded in large clusters of other elements, many of which may also be fixed. We also found evidence that this accumulation is an ongoing process. These results support the hypothesis that TEs accumulate in the non-recombining part of the genome. Their implications for the effects of TEs on determining the chromatin structure of the host genomes are discussed in the light of recent evidence for the role of TE-derived small interfering-RNAs as cis -acting determinants of heterochromatin formation.  相似文献   

14.
Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.  相似文献   

15.
Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1‐AIPP1‐EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin‐containing genes. However, the genome‐wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome‐wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin‐containing genes, including not only intronic heterochromatin‐containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin‐overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin‐containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.  相似文献   

16.
Phylogenetic analysis of transposable elements (TEs) allows us to define the relationships between the domains or gene(s) that compose them. Moreover, modules of a few amino-acids can be detected within gag, pol, envgenes or within the integrase domain of retrotransposons and transposase of DNA elements. The combination of these observations clearly shows that the evolutionary history of TEs is the outcome of the acquisition and loss of modules with differing origins and histories. This raises the question of the origin of TEs: are they derived from viruses? Do the basic building bricks come from the prokaryotes, and can they be assembled in the eukaryotes? Are the TEs found in prokaryotes the result of the disintegration of complex elements such as retroelements? Do they evolve from the simplest to the more complex, or are they opportunistic sequences evolving by acquiring and/or losing modules which may be either important or superfluous to their fitness (i.e., their ability to transpose). These are some of the questions that are addressed and discussed in the light of the comparative structures of TEs.  相似文献   

17.
Distribution of transposable elements in prokaryotes   总被引:5,自引:0,他引:5  
We consider models for the distribution of the number of elements per host genome for families of transposable elements (TEs). The hosts are assumed to be prokaryotes. These models assume a constant rate of infection of uninfected hosts by TEs, replicative transposition within each host, and a reduction of the fitness of a host dependent on the number of TEs it contains. No provision was made for the deletion of individual TEs within a host or for recombination, since both are relatively rare events in prokaryotes. These models mostly assume that the TE performs no function for the host, and that the reduction in fitness with increased copy number is due to effects such as the impairment of beneficial genes by transposition or homologous recombination. We also consider a model in which the TEs can convey a selective advantage to the host. The equilibrium distributions of copy number are determined for these models, and are of a variety of classical types. Relevant parameters of the models are estimated using data on the distribution of insertion sequences in natural isolates of Escherichia coli.  相似文献   

18.
A persistent question in epigenetics is how heterochromatin is targeted for assembly at specific domains, and how that chromatin state is faithfully transmitted. Stable heterochromatin is necessary to silence transposable elements (TEs) and maintain genome integrity. Both the RNAi system and heterochromatin components HP1 (Swi6) and H3K9me2/3 are required for initial establishment of heterochromatin structures in S. pombe. Here we utilize both loss of function alleles and the newly developed Drosophila melanogaster transgenic shRNA lines to deplete proteins of interest at specific development stages to dissect their roles in heterochromatin assembly in early zygotes and in maintenance of the silencing chromatin state during development. Using reporters subject to Position Effect Variegation (PEV), we find that depletion of key proteins in the early embryo can lead to loss of silencing assayed at adult stages. The piRNA component Piwi is required in the early embryo for reporter silencing in non-gonadal somatic cells, but knock-down during larval stages has no impact. This implies that Piwi is involved in targeting HP1a when heterochromatin is established at the late blastoderm stage and possibly also during embryogenesis, but that the silent chromatin state created is transmitted through cell division independent of the piRNA system. In contrast, heterochromatin structural protein HP1a is required for both initial heterochromatin assembly and the following mitotic inheritance. HP1a profiles in piwi mutant animals confirm that Piwi depletion leads to decreased HP1a levels in pericentric heterochromatin, particularly in TEs. The results suggest that the major role of the piRNA system in assembly of heterochromatin in non-gonadal somatic cells occurs in the early embryo during heterochromatin formation, and further demonstrate that failure of heterochromatin formation in the early embryo impacts the phenotype of the adult.  相似文献   

19.
Eukaryotic genomes contain transposable elements (TE) that can move into new locations upon activation. Since uncontrolled transposition of TEs, including the retrotransposons and DNA transposons, can lead to DNA breaks and genomic instability, multiple mechanisms, including heterochromatin‐mediated repression, have evolved to repress TE activation. Studies in model organisms have shown that TEs become activated upon aging as a result of age‐associated deregulation of heterochromatin. Considering that different organisms or cell types may undergo distinct heterochromatin changes upon aging, it is important to identify pathways that lead to TE activation in specific tissues and cell types. Through deep sequencing of isolated RNAs, we report an increased expression of many retrotransposons in the old Drosophila fat body, an organ equivalent to the mammalian liver and adipose tissue. This de‐repression correlates with an increased number of DNA damage foci and decreased level of Drosophila lamin‐B in the old fat body cells. Depletion of the Drosophila lamin‐B in the young or larval fat body results in a reduction of heterochromatin and a corresponding increase in retrotransposon expression and DNA damage. Further manipulations of lamin‐B and retrotransposon expression suggest a role of the nuclear lamina in maintaining the genome integrity of the Drosophila fat body by repressing retrotransposons.  相似文献   

20.
Lerat E  Sémon M 《Gene》2007,396(2):303-311
Transposable elements (TEs) are genomic sequences able to replicate themselves, and to move from one chromosomal position to another within the genome. Many TEs contain their own regulatory regions, which means that they may influence the expression of neighboring genes. TEs may also be activated and transcribed in various cancers. We therefore tested whether gene expression in normal and tumor tissues is influenced by the neighboring TEs. To do this, we associated all human genes to the nearest TEs. We analyzed the expression of these genes in normal and tumor tissues using SAGE and EST data, and related this to the presence and type of TEs in their vicinity. We confirmed that TEs tend to be located in antisense orientation relative to their hosting genes. We found that the average number of tissues where a gene is expressed varies depending on the type of TEs located near the gene, and that the difference in expression level between normal and tumor tissues is greatest for genes that host SINE elements. This deregulation increases with the number of SINE copies in the gene vicinity. This suggests that SINE elements might contribute to the cascade of gene deregulation in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号