首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.  相似文献   

2.
The aim of this work was to optimize acid stress conditions for induction of acid tolerance response (ATR) in the biocontrol agent Pantoea agglomerans and study the effect of ATR induced on the ability to survive under acidic conditions. Initially, Pantoea agglomerans was grown in mild acidic conditions (pH 6.0, 5.5, 5.0 and 4.0) in order to induce ATR. The highest ATR was induced at initial pH of 5 using malic or citric acid. A first in vitro experiment was carried out. Thus, basal liquid medium at different pHs (3.0, 3.5, 4.0 and non-acidified) were then inoculated with acid-adapted and non-adapted inocula of P. agglomerans and survivals were examined during incubation at 25 or 4 °C. It was found that acid adaptation enhanced the survivals of Pantoea agglomerans CPA-2 cells at pH levels at which the cells were unable to grow (<3.5 and 4.0, at 25 and 4 °C, respectively). In contrast, in pH levels at which the cells were able to grow (pH 4.0 at 25 °C and non-acidified medium at 25 and 4 °C) no-differences were found between adapted and non-adapted cells. In in vivo tests, adapted and non-adapted cells were inoculated in wounds on mandarins and pome fruits. No differences were found between adapted and non-adapted cells and biocontrol efficacy was maintained. The present study demonstrated that exposure of Pantoea agglomerans to mild acidic conditions could induce acid resistance in this biocontrol agent.  相似文献   

3.

A phosphate solubilizing bacterium ZB was isolated from the rhizosphere soil of Araucaria, which falls into the species Pantoea agglomerans. Optimization for phosphate solubilization by strain ZB was performed. At optimum culture conditions, the isolate showed great ability of solubilizing different insoluble inorganic phosphate sources viz. Ca3(PO4)2 (TCP), Hydroxyapatite (HP), CaHPO4, AlPO4, FePO4 along with rock phosphates (RPs). Inoculation with planktonic cells was found to enhance dissolved phosphorous as compared to that achieved by symplasma inoculation. Besides inoculation with different status of cells, pre-incubation could also exert a great effect on phosphate solubilization ability of P. agglomerans. When isolate ZB was cultured with glucose as carbon sources, phosphorous was more efficiently dissolved from HP and RP without pre-incubation in comparison to that obtained with pre-cultivation. Pre-cultivation, however, was more suitable for P solubilization than no pre-cultivation when bacteria were grown with xylose. A positive correlation was detected between the production of organic acids and phosphate solubilization. P. agglomerans ZB possessed many plant growth promotion traits such as N2 fixation and production of indole 3-acetic acid, phytase, alkaline phosphatase. Pot experiment showed inoculation with single isolate ZB or biofertilizer prepared from semi-solid fermentation of isolate ZB with spent mushroom substrate (SMS) compost could enhance plant growth with respect to number of leaves, plant leave area, stem diameter, root length, root dry mass, shoot dry mass and biomass when compared to the abiotic control, revealing strain ZB could be a promising environmental-friendly biofertilizer to apply for agricultural field.

  相似文献   

4.
Gluconobacter oxydans oxidizes glucose via alternative pathways: one involves the non-phosphorylative, direct oxidation route to gluconic acid and ketogluconic acids, and the second requires an initial phosphorylation and then oxidation via the pentose phosphate pathway enzymes. During growth of G. oxydans in glucose-containing media, the activity of this pathway is strongly influenced by (1) the pH value of the environment and (2) the actual concentration of glucose present in the culture. At pH values below 3.5 the activity of the pentose phosphate pathway was completely inhibited resulting in an increased requirement of the organism for nutrient substances, and a poor cell yield. At pH 5.5 a triphasic growth response was observed when G. oxydans was grown in a defined medium. Above a threshold value of 5–15 mM glucose, oxidation of both glucose and gluconate by the pentose phosphate pathway enzymes was repressed, causing a rapid accumulation of gluconic acid in the culture medium. When growing under these conditions, a low affinity for the oxidation of glucose was found (K s=13 mM). Below this threshold glucose concentration, pentose phosphate pathway enzymes were synthesized and glucose was actively assimilated via this pathway. It was shown that de novo enzyme synthesis was necessary for increased pentose phosphate pathway activity and that assimilation of gluconate by washed cell suspensions was inhibited by glucose.  相似文献   

5.
Three phosphate solubilizing bacterial isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 were assessed for mutual relationships among them, competitiveness with soil microorganisms and associations with plant root using luxAB reporter genes for follow-up studies. Synergism between either P. agglomerans or M. laevaniformans, as acid-producing bacteria, and P. putida, as a strong phosphatase producer, was consistently observed both in liquid culture medium and in root rhizosphere. All laboratory, greenhouse and field experiments proved that these three isolates compete well with naturally occurring soil microorganisms. Consistently, the combinations of either P. agglomerans or M. laevaniformans strains with Pseudomonas putida led to higher biomass and potato tuber in greenhouse and in field trials. It is conceivable that combinations of an acid- and a phosphatase-producing bacterium would allow simultaneous utilization of both inorganic and organic phosphorus compounds preserving the soil structure.  相似文献   

6.
Ortmann I  Moerschbacher BM 《Planta》2006,224(4):963-970
Induced disease resistance in plants is based on multiple mechanisms, including cell “priming”, i.e. an enhancement of the capacity to mobilize cellular defense responses upon pathogen attack. Potent inducers of priming are, for example, salicylic acid, synthetic compounds such as a benzothiadiazole, and certain rhizosphere bacteria. While priming is well characterized for a number of dicot plants, only few cases of priming are documented in monocots. Here, we report that the spent growth medium of the Gram negative bacterium Pantoea agglomerans is capable of priming wheat cells (Triticum aestivum L. cv Prelude-Sr5) for elicitor-induced defense responses. Pre-incubation of suspension-cultured wheat cells with growth medium of P. agglomerans led to a strong enhancement of an oxidative burst that has been induced by chitin or chitosan and to an increase in extracellular peroxidase activity. Moreover, exopolysaccharides (EPS) were isolated from the spent growth medium and demonstrated to be sufficient for the induction of H2O2 priming. The EPS-induced priming was shown to be time- and concentration-dependent. We conclude that EPS are the or one of several priming-active component(s) in the spent growth medium of P. agglomerans. The present work is the first report of priming in a monocot plant by a specific component of bacterial origin. A comparison with known chemical inducers of resistance revealed that a benzothiadiazole was able to enhance the oxidative burst similar to the spent growth medium or the EPS of P. agglomerans, while salicylic acid was not.  相似文献   

7.
High-pressure liquid chromatography (HPLC) analysis established myo-inositol pentakisphosphate as the final product of phytate dephosphorylation by the phytate-degrading enzyme from Pantoea agglomerans. Neither product inhibition by phosphate nor inactivation of the Pantoea enzyme during the incubation period were responsible for the limited phytate hydrolysis as shown by addition of phytate-degrading enzyme and phytate, respectively, after the observed stop of enzymatic phytate degradation. In additon, the Pantoea enzyme did not possess activity toward the purified myo-inositol pentakisphosphate. Using a combination of High-Performance Ion Chromatography (HPIC) analysis and kinetic studies, the nature of the generated myo-inositol pentakisphosphate was established. The data demonstrate that the phytate-degrading enzyme from Pantoea agglomerans dephosphorylates myo-inositol hexakisphosphate in a stereospecific way to finally D-myo-inositol(1,2,4,5,6)pentakisphosphate.  相似文献   

8.
A periplasmatic phytate-degrading enzyme from Pantoea agglomerans isolated from soil was purified about 470-fold to apparent homogeneity with a recovery of 16% referred to the phytate-degrading activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 60°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 0.34 mmol/l and kcat = 21 s-1 at pH 4.5 and 37°C. The enzyme exhibited a narrow substrate selectivity. Only phytate and glucose-1-phosphate were identified as good substrates. Since this Pantoea enzyme has a strong preference for glucose-1-phosphate over phytate, under physiological conditions glucose-1-phosphate is its most likely substrate. The maximum amount of phosphate released from phytate by the purified enzyme suggests myo-inositol pentakisphosphate as the final product of enzymatic phytate degradation.  相似文献   

9.
Pantoea (formerly Enterobacter) agglomerans YS19 is an endophytic diazotrophic bacterium isolated from rice (Oryza sativa cv. Yuefu) grown in temperate climatic regions in west Beijing (China). The bacterium forms aggregate structures called `symplasmata'. A symplasmatum is a multicellular aggregate structure in which several (at least two) to hundreds of individual cells tightly bind together. The studies on the symplasmata formation of YS19 showed that there were two growth stages for YS19, including the single cell stage existing before exponential growth phase and the symplasmata forming stage starting at the early stationary growth phase in liquid GY (glucose yeast extract) medium or at the end of the exponential growth phase in liquid LB (Luria-Bertani) medium. There was a correlation between symplasmata formation and bacterial growth phase. When the medium was acidified, the cell growth rate was affected by the low pH of the medium, but the time required for symplasmata formation was not influenced by it. YS19 also formed symplasmata on agar medium, where more symplasmata were formed than in liquid medium. The volume of individual constitutional cells of symplasmata was sharply decreased by more than a half in comparison with that of the single cells existing before symplasmata formation. On all the media tested, YS19 formed symplasmata in most of the cell growth phases. The genome DNA/DNA homology between P. agglomerans YS19 and type strain P. agglomerans JCM1236T (ATCC27155T) was determined as 90.1%, confirming its membership of P. agglomerans. In order to investigate the phylogenetic relationships of YS19 at the intraspecific, intrageneric and super-generic level, the 16S rDNA similarities between strain YS19 and 17 other strains of Pantoea and 4 representatives of the closely related genera were analyzed. All the strains of Pantoea were clustered into 5 groups, and YS19 was clustered in a unique branch. The 16S rDNA similarity between YS19 and type strain JCM1236T was 93.9%, much lower than the generally accepted value (=97%) for members of the same species, indicating that the 16S rDNA of YS19 has a distinct molecular characteristic.  相似文献   

10.
The suitability of using a simple brewer's yeast extract (BYE), prepared by autolysis of complete beer slurry, for growth and sporulation of Bacillus thuringiensis kurstaki was studied in baffled shake flasks. In a standard buffered medium with 2.5% (w/v) glucose and 1% (w/v) brewer's yeast extract, growth of B. t. kurstaki resulted in a low biomass production with considerable byproduct formation, including organic acids and a concomitant low medium pH, incomplete glucose utilization and marginal sporulation, whereas growth in the same medium with a commercial laboratory-grade yeast extract (Difco) resulted in a high biomass concentration, complete glucose utilization, relatively low levels of byproducts and complete sporulation (2.6 × 109 spores/ml). When glucose was left out of the medium, however, growth parameters and sporulation were comparable for BYE and commercial yeast extract, but absolute biomass levels and spore counts were low. Iron was subsequently identified as a limiting factor in BYE. After addition of 3 mg iron sulphate/l, biomass formation in BYE-medium more than doubled, low byproduct formation was observed, and complete sporulation occurred (2.8 × 109spores/ml). These data were slightly lower than those obtained in media with commercial yeast extract (3.6 × 109spores/ml), which also benefited, but to a smaller extent, from addition of iron.  相似文献   

11.
Aims: To optimize the medium components for the production of indole‐3‐acetic acid (IAA) by isolated bacterium Pantoea agglomerans strain PVM. Methods and Results: Present study deals with the production of an essential plant hormone IAA by a bacterial isolate P. agglomerans strain PVM identified by 16S rRNA gene sequence analysis. The medium containing 8 g l?1 of meat extract and 1 g l?1 of l ‐tryptophan (precursor) at optimum pH 7, 30°C and 48‐h incubation gave the maximum production of IAA (2·191 g l?1). Effect of IAA synthesized on in vitro root induction in Nicotiana tobacum (leaf) explants was compared with that of control. IAA was characterized by high‐performance thin‐layer chromatography, high‐performance liquid chromatography and gas chromatography–mass spectroscopy. Conclusions: Pantoea agglomerans strain PVM was a good candidate for the inexpensive and utmost production of IAA in short period, as it requires simple medium (meat extract and l ‐tryptophan). Significance and Impact of the Study: The present report first time showed the rapid, cost‐effective and maximum production of IAA. No reports are available on the optimization of particular medium components for the production of IAA. This study demonstrates a novel approach for in vitro root induction in N. tobacum (leaf) explants.  相似文献   

12.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

13.
【背景】土壤中大部分磷元素是以难溶性磷酸盐的形式存在,不能被农作物有效利用,而传统化学肥料会带来环境污染等问题。【目的】解决土壤磷缺失现状,开发新型、安全、高效的微生物菌肥。【方法】取武汉科技大学图书馆后土壤为试验材料,筛选出一株高效解磷菌。通过个体形态鉴定、生理生化鉴定、16S rRNA基因序列分析鉴定菌株,以NBRIP为基础培养基进行条件优化,借助高效液相色谱进行细菌解磷机理探究。【结果】所筛选的高效解磷菌株为唐菖蒲伯克霍尔德氏菌(Burkholderia gladioli)。在20种氨基酸中,D-蛋氨酸对菌株的生长和溶磷促进作用最好,促进效果达到19.09%和16.16%,甲酸钠对菌株的生长和溶磷有抑制效果,抑制效果达到39.08%和10.66%。该菌株通过分泌葡萄糖醛酸、D-L-苹果酸等有机酸溶解环境中的磷酸盐,将菌株制作成菌肥对辣椒幼苗有明显的促生长作用。【结论】利用唐菖蒲伯克霍尔德氏菌(Burkholderia gladioli)分泌有机酸溶解土壤中的磷酸盐,可为生物肥料的制备和应用提供一定的理论参考。  相似文献   

14.
The growth of chick heart cells in culture declines when the cells reach confluency. The decline in growth rate is associated with both a decrease in the pH of the bicarbonate-CO2 buffered medium and a reduced capacity for glucose oxidation by the pentose phosphate pathway. The pH of proliferating cultures supplemented with either 14 mM NaHCO3 or with a mixture of organic buffers (pK 7.4) was increased by 0.3 pH unit over that of the controls. The rate of glucose oxidation by the pentose phosphate pathway in confluent cultures supplemented with NaHCO3 or organic buffer increased by 60% 24 h after pH correction. This was associated with an increase in glucose uptake from the medium. We conclude that pH elevation in confluent heart cell cultures stimulates both growth and the capacity for glucose oxidation by the pentose phosphate pathway. The data also provide further evidence for a relationship between activity of the pentose phosphate pathway and cell growth.  相似文献   

15.
Aims: To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Methods and Results: Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose‐ and (NH4)2SO4‐based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P‐solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. Conclusions: The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH4)2SO4 as C and N sources allowed a higher solubilization efficiency at high pH. Significance and Impact of the Study: This organism is a potentially proficient soil inoculant, especially in P‐poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals.  相似文献   

16.

Production of 2,3-butanediol (2,3-BD) by Pantoea agglomerans strain BL1 was investigated using soybean hull hydrolysate as substrate in batch reactors. The cultivation media consisted of a mixture of xylose, arabinose, and glucose, obtained from the hemicellulosic fraction of the soybean hull biomass. We evaluated the influence of oxygen supply, pH control, and media supplementation on the growth kinetics of the microorganism and on 2,3-BD production. P. agglomerans BL1 was able to simultaneously metabolize all three monosaccharides present in the broth, with average conversions of 75% after 48 h of cultivation. The influence of aeration conditions employed demonstrated the mixed acid pathway of 2,3-BD formation by enterobacteria. Under fully aerated conditions (2 vvm of air), up to 14.02 g L−1 of 2.3-BD in 12 h of cultivation were produced, corresponding to yields of 0.53 g g−1 and a productivity of 1.17 g L−1 h−1, the best results achieved. These results suggest the production potential of 2,3-BD by P. agglomerans BL1, which has been recently isolated from an environmental consortium. The present work proposes a solution for the usage of the hemicellulosic fraction of agroindustry biomasses, carbohydrates whose utilization are not commonly addressed in bioprocess.

  相似文献   

17.
Propionic acid production from glucose was studied using Propionibacterium freudenreichii shermanii. Conditions were optimized for high yields of propionic acid and total organic acids by sequential optimization of parameters like pH, inoculum age, inoculum volume and substrate concentration. Near-theoretical yield (0.54?±?0.023?g/g) was achieved for propionic acid with fermentation of 1% glucose using 20% (v/v) of 48?hr old P. shermanii at 30°C, pH maintained at 5.5. Total organic acid yield under these conditions was 0.74?±?0.06?g/g. The study resulted in achieving 98% and 95% theoretical yields of propionic acid and total organic acids, respectively. Under optimized conditions, along with organic acids, P. shermanii also produced vitamin B12 and trehalose intracellularly, showing its potential to be used as a cell factory.  相似文献   

18.
The cells of Acetobacter xylinum decreased phosphate concentration in the medium from 5 to 2.5 or 0.3 mM during incubation in the presence of Mg2+ and glucose, or Mg2+ and casamino acids, respectively. The prevalence of orthophosphate or polyphosphate in the biomass of A. xylinum depends on the medium composition. Under phosphate uptake in the presence of glucose, the content of orthophosphate in the biomass changed little, while that of polyphosphate increased fourfold. At incubation with casamino acids, the content of orthophosphate increased 15 times, while that of polyphosphate increased only 2.5 times. Some part of orthophosphate in this case seems to be bound with the cell surface. The polyphosphate chain length in the cells of A. xylinim increases under phosphate uptake. This increase is more noticeable in the presence of glucose. Casamino acids can be replaced by α-ketoglutaric acid in combination with (NH4)2SO4, or arginine, or glutamine, the catabolism of which results in formation of NH4 + and α-ketoglutarate.  相似文献   

19.
Phycomyces blakesleeanus sporangiospores responded differently to activation by physical and chemical stimuli. Spores that were physically (heat shock) activated or chemically (ammonium acetate) activated germinated and grew at pH 4.5 with the hexoses glucose, fructose, galactose, andN-acetylglucosamine, and with glycerol and amino acids. Under these conditions, physically activated spores showed a lower, although significant growth with the hexoses fructose, galactose,N-acetylglucosamine and with glycerol. On the other hand, physically activated spores incubated at alkaline pH (pH 7.3) required glucose to germinate; a requirement not observed with chemically activated spores, which showed significant growth in the other hexoses tested. Both physically and chemically activated spores incubated at pH 7.3 were unable to germinate and grow with amino acids and glycerol. These results suggest that there are different targets for activation of the spores by physical and chemical treatments. The levels of the fermentative enzymes alcohol dehydrogenase and lactate dehydrogenase and of the oxidative enzyme NAD+-isocitrate dehydrogenase were higher in cells grown at pH 4.5 in medium containing glucose; however, alcohol dehydrogenase and lactate dehydrogenase appear not to be affected by a change in the pH of the growth medium.  相似文献   

20.
Summary Fifteen organic acids were examined for their abilities to support the growth and anthocyanin accumulation by suspension cultures of wild carrot (Daucus carota L.) using ammonium as the sole nitrogen source. Glutarate, adipate, pimelate, azelate, cinnamate, and phthalate were toxic to the culture. They prevented growth and anthocyanin accumulation at 5 mM or less in media that were otherwise adequate for growth. Succinate, fumarate, malate, α-ketoglutarate, glutamate, maleate, malonate, tartarate, and citrate all supported growth and anthocyanin accumulation but in varying amounts. The growth achieved in medium containing 20 mM acid was higher at an initial pH of 5.5 than at an initial pH of 4.5. The growth achieved was dependent on the organic acid used, its concentration, and the initial pH of the medium. When growth occurred the final pH was higher than the initial pH with most of the acids. Anthocyanin accumulation was greatest with succinate at 14 to 20 mM at an initial pH of 4.2 or 4.3 and declined when the initial pH was above 4.3. These studies were supported by grants from General Foods Corporation and the W. Alton Jones Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号