首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we show that the Drosophila homologue of Lissencephaly-1, DLis-1, acts together with Bicaudal-D (Bic-D), Egalitarian (Egl), dynein and microtubules to determine oocyte identity. DLis-1 is further required for nurse-cell-to-oocyte transport during oocyte growth, and for the positioning of the nucleus in the oocyte. Immunostaining of DLis-1 protein reveals a cortical localization that is independent of microtubules. DLis-1 may function in this position as a cortical anchor for the other nuclear-localization factors. DLis-1 and Bic-D are further required for nuclear localization in the developing nervous system, indicating that homologues of Bic-D, dynein and Egl-like proteins may also be involved in vertebrate neural migration and that their absence may cause a Miller-Dieker-like lissencephaly.  相似文献   

2.
Members of the highly conserved serine/arginine-rich (SR) protein family are nuclear factors involved in splicing of metazoan mRNA precursors. In mammals, two nuclear import receptors, transportin (TRN)-SR1 and TRN-SR2, are responsible for targeting SR proteins to the nucleus. Distinctive features in the nuclear localization signal between Drosophila and mammalian SR proteins prompted us to examine the mechanism by which Drosophila SR proteins and their antagonist repressor splicing factor 1 (RSF1) are imported into nucleus. Herein, we report the identification and characterization of a Drosophila importin beta-family protein (dTRN-SR), homologous to TRN-SR2, that specifically interacts with both SR proteins and RSF1. dTRN-SR has a broad localization in the cytoplasm and the nucleus, whereas an N-terminal deletion mutant colocalizes with SR proteins in nuclear speckles. Far Western experiments established that the RS domain of SR proteins and the GRS domain of RSF1 are required for the direct interaction with dTRN-SR, an interaction that can be modulated by phosphorylation. Using the yeast model system in which nuclear import of Drosophila SR proteins and RSF1 is impaired, we demonstrate that complementation with dTRN-SR is sufficient to target these proteins to the nucleus. Together, the results imply that the mechanism by which SR proteins are imported to the nucleus is conserved between Drosophila and humans.  相似文献   

3.
4.
BACKGROUND: During Drosophila oogenesis, unrepaired double-strand DNA breaks activate a mei-41-dependent meiotic checkpoint, which couples the progression through meiosis to specific developmental processes. This checkpoint affects the accumulation of Gurken protein, a transforming growth factor alpha-like signaling molecule, as well as the morphology of the oocyte nucleus. However, the components of this checkpoint in flies have not been completely elucidated. RESULTS: We show that a mutation in the Drosophila Chk2 homolog (DmChk2/Mnk) suppresses the defects in the translation of gurken mRNA and also the defects in oocyte nuclear morphology. We also found that DmChk2 is phosphorylated in a mei-41-dependent pathway. Analysis of the meiotic cell cycle progression shows that the Drosophila Chk2 homolog is not required during early meiotic prophase, as has been observed for Chk2 in C. elegans. We demonstrate that the activation of the meiotic checkpoint affects Dwee1 localization and is associated with DmChk2-dependent posttranslational modification of Dwee1. We suggest that Dwee1 has a role in the meiotic checkpoint that regulates the meiotic cell cycle, but not the translation of gurken mRNA. In addition, we found that p53 and mus304, the Drosophila ATR-IP homolog, are not required for the patterning defects caused by the meiotic DNA repair mutations. CONCLUSIONS: DmChk2 is a transducer of the meiotic checkpoint in flies that is activated by unrepaired double-strand DNA breaks. Activation of DmChk2 in this specific checkpoint affects a cell cycle regulator as well as mRNA translation.  相似文献   

5.
In Drosophila, the body axes are specified during oogenesis through interactions between the germline and the overlying somatic follicle cells [1-5]. A Gurken/TGF-alpha signal from the oocyte to the adjacent follicle cells assigns them a posterior identity [6, 7]. These posterior cells then signal back to the oocyte, thereby inducing the repolarization of the microtubule cytoskeleton, the migration of the oocyte nucleus, and the localization of the axis specifying mRNAs [8-10]. However, little is known about the signaling pathways within or from the follicle cells responsible for these patterning events. We show that the Salvador Warts Hippo (SWH) tumor-suppressor pathway is required in the follicle cells in order to induce their Gurken- and Notch-dependent differentiation and to limit their proliferation. The SWH pathway is also required in the follicle cells to induce axis specification in the oocyte, by inducing the migration of the oocyte nucleus, the reorganization of the cytoskeleton, and the localization of the mRNAs that specify the anterior-posterior and dorsal-ventral axes of the embryo. This work highlights a novel connection between cell proliferation, cell growth, and axis specification in egg chambers.  相似文献   

6.
The anteroposterior and dorsoventral axes of the Drosophila embryo are established during oogenesis through the activities of Gurken (Grk), a Tgfalpha-like protein, and the Epidermal growth factor receptor (Egfr). spn-F mutant females produce ventralized eggs similar to the phenotype produced by mutations in the grk-Egfr pathway. We found that the ventralization of the eggshell in spn-F mutants is due to defects in the localization and translation of grk mRNA during mid-oogenesis. Analysis of the microtubule network revealed defects in the organization of the microtubules around the oocyte nucleus. In addition, spn-F mutants have defective bristles. We cloned spn-F and found that it encodes a novel coiled-coil protein that localizes to the minus end of microtubules in the oocyte, and this localization requires the microtubule network and a Dynein heavy chain gene. We also show that Spn-F interacts directly with the Dynein light chain Ddlc-1. Our results show that we have identified a novel protein that affects oocyte axis determination and the organization of microtubules during Drosophila oogenesis.  相似文献   

7.
8.
To investigate the role of the host cytoskeleton in the maternal transmission of the endoparasitic bacteria Wolbachia, we have characterized their distribution in the female germ line of Drosophila melanogaster. In the germarium, Wolbachia are distributed to all germ cells of the cyst, establishing an early infection in the cell destined to become the oocyte. During mid-oogenesis, Wolbachia exhibit a distinct concentration between the anterior cortex and the nucleus in the oocyte, where many bacteria appear to contact the nuclear envelope. Following programmed rearrangement of the microtubule network, Wolbachia dissociate from this anterior position and become dispersed throughout the oocyte. This localization pattern is distinct from mitochondria and all known axis determinants. Manipulation of microtubules and cytoplasmic Dynein and Dynactin, but not Kinesin-1, disrupts anterior bacterial localization in the oocyte. In live egg chambers, Wolbachia exhibit movement in nurse cells but not in the oocyte, suggesting that the bacteria are anchored by host factors. In addition, we identify mid-oogenesis as a period in the life cycle of Wolbachia in which bacterial replication occurs. Total bacterial counts show that Wolbachia increase at a significantly higher rate in the oocyte than in the average nurse cell, and that normal Wolbachia levels in the oocyte depend on microtubules. These findings demonstrate that Wolbachia utilize the host microtubule network and associated proteins for their subcellular localization in the Drosophila oocyte. These interactions may also play a role in bacterial motility and replication, ultimately leading to the bacteria's efficient maternal transmission.  相似文献   

9.
During oogenesis in Drosophila, mRNAs encoding determinants required for the polarization of egg and embryo become localized in the oocyte in a spatially restricted manner. The TGF-alpha like signaling molecule Gurken has a central role in the polarization of both body axes and the corresponding mRNA displays a unique localization pattern, accumulating initially at the posterior and later at the anterior-dorsal of the oocyte. Correct localization of gurken RNA requires a number of cis-acting sequence elements, a complex of trans-acting proteins, of which only several have been identified, and the motor proteins Dynein and Kinesin, traveling along polarized microtubules. Here we report that the cytoplasmic Dynein-light-chain (DDLC1) which is the cargo-binding subunit of the Dynein motor protein, directly bound with high specificity and affinity to a 230-nucleotide region within the 3'UTR of gurken, making it the first Drosophila mRNA-cargo to directly bind to the DLC. Although DDLC1 lacks known RNA-binding motifs, comparison to double-stranded RNA-binding proteins suggested structural resemblance. Phenotypic analysis of ddlc1 mutants supports a role for DDLC1 in gurken RNA localization and anchoring as well as in correct positioning of the oocyte nucleus.  相似文献   

10.
11.
BACKGROUND: Motor proteins of the minus end-directed cytoplasmic dynein and plus end-directed kinesin families provide the principal means for microtubule-based transport in eukaryotic cells. Despite their opposing polarity, these two classes of motors may cooperate in vivo. In Drosophila circumstantial evidence suggests that dynein acts in the localization of determinants and signaling factors during oogenesis. However, the pleiotropic requirement for dynein throughout development has made it difficult to establish its specific role. RESULTS: We analyzed dynein function in the oocyte by disrupting motor activity through temporally restricted expression of the dynactin subunit, dynamitin. Our results indicate that dynein is required for several processes that impact patterning; such processes include localization of bicoid (bcd) and gurken (grk) mRNAs and anchoring of the oocyte nucleus to the cell cortex. Surprisingly, dynein function is sensitive to reduction in kinesin levels, and germ line clones lacking kinesin show defects in dorsal follicle cell fate, grk mRNA localization, and nuclear attachment that are similar to those resulting from the loss of dynein. Significantly, dynein and dynactin localization is perturbed in these animals. Conversely, kinesin localization also depends on dynein activity. CONCLUSIONS: We demonstrate that dynein is required for nuclear anchoring and localization of cellular determinants during oogenesis. Strikingly, mutations in the kinesin motor also disrupt these processes and perturb dynein and dynactin localization. These results indicate that the activity of the two motors is interdependent and suggest a model in which kinesin affects patterning indirectly through its role in the localization and recycling of dynein.  相似文献   

12.
13.
Kadir R  Bakhrat A  Tokarsky R  Abdu U 《PloS one》2012,7(5):e38010
Rad9, Rad1, and Hus1 (9-1-1) are part of the DNA integrity checkpoint control system. It was shown previously that the C-terminal end of the human Rad9 protein, which contains a nuclear localization sequence (NLS) nearby, is critical for the nuclear transport of Rad1 and Hus1. In this study, we show that in Drosophila, Hus1 is found in the cytoplasm, Rad1 is found throughout the entire cell and that Rad9 (DmRad9) is a nuclear protein. More specifically, DmRad9 exists in two alternatively spliced forms, DmRad9A and DmRad9B, where DmRad9B is localized at the cell nucleus, and DmRad9A is found on the nuclear membrane both in Drosophila tissues and also when expressed in mammalian cells. Whereas both alternatively spliced forms of DmRad9 contain a common NLS near the C terminus, the 32 C-terminal residues of DmRad9A, specific to this alternative splice form, are required for targeting the protein to the nuclear membrane. We further show that activation of a meiotic checkpoint by a DNA repair gene defect but not defects in the anchoring of meiotic chromosomes to the oocyte nuclear envelope upon ectopic expression of non-phosphorylatable Barrier to Autointegration Factor (BAF) dramatically affects DmRad9A localization. Thus, by studying the localization pattern of DmRad9, our study reveals that the DmRad9A C-terminal region targets the protein to the nuclear membrane, where it might play a role in response to the activation of the meiotic checkpoint.  相似文献   

14.
Lissencephaly is a severe congenital brain malformation resulting from incomplete neuronal migration. One causal gene, LIS1, is homologous to nudF, a gene required for nuclear migration in A. nidulans. We have characterized the Drosophila homolog of LIS1 (Lis1) and show that Lis1 is essential for fly development. Analysis of ovarian Lis1 mutant clones demonstrates that Lis1 is required in the germline for synchronized germline cell division, fusome integrity and oocyte differentiation. Abnormal packaging of the cysts was observed in Lis1 mutant clones. Our results indicate that LIS1 is important for cell division and differentiation and the function of the membrane cytoskeleton. They support the notion that LIS1 functions with the dynein complex to regulate nuclear migration or cell migration.  相似文献   

15.
BACKGROUND: The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS: Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION: The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.  相似文献   

16.
The deadlock gene is required for a number of key developmental events in Drosophila oogenesis. Females homozygous for mutations in the deadlock gene lay few eggs and those exhibit severe patterning defects along both the anterior-posterior and dorsal-ventral axis. In this study, we analyzed eggs and ovaries from deadlock mutants and determined that deadlock is required for germline maintenance, stability of mitotic spindles, localization of patterning determinants, oocyte growth and fusome biogenesis in males and females. Deadlock encodes a novel protein which colocalizes with the oocyte nucleus at midstages of oogenesis and with the centrosomes of early embryos. Our genetic and immunohistological experiments point to a role for Deadlock in microtubule function during oogenesis.  相似文献   

17.
Technau M  Roth S 《Fly》2008,2(2):82-91
Proteins harboring a C-terminal KASH (Klarsicht/Anc-1/Syne Homology) domain, which attaches to the nucleus, have been identified in many different organisms. Two KASH proteins are known from Drosophila, Msp-300 and Klarsicht, the latter of which plays a role in nuclear migration during eye development. Here, we show that a complete deletion of Msp-300 leads to larval lethality. This lethality appears to be due to Msp-300 isoforms containing the N-terminal actin binding, but not the C-terminal KASH domain. Msp-300 and Klar are expressed during oogenesis and localize to the nuclear envelope of the germ line nuclei. However, neither Msp-300 single mutants nor Msp-300; klar double mutants cause defects in nuclear migration or anchoring during oogenesis. Germ line nuclear envelope localization of both KASH domain proteins depends on klaroid, the only Drosophila SUN domain homolog expressed in females. Like Msp-300 and klar, klaroid is also dispensable for normal ovarian development.  相似文献   

18.
19.
20.
The Drosophila anterior-posterior axis is established at stage 7 of oogenesis when the posterior follicle cells signal to polarize the oocyte microtubule cytoskeleton. This requires the conserved PAR-1 kinase, which can be detected at the posterior of the oocyte in immunostainings from stage 9. However, this localization depends on Oskar localization, which requires the earlier PAR-1-dependent microtubule reorganization, indicating that Oskar-associated PAR-1 cannot establish oocyte polarity. Here we analyze the function of the different PAR-1 isoforms and find that only PAR-1 N1 isoforms can completely rescue the oocyte polarity phenotype. Furthermore, PAR-1 N1 is recruited to the posterior cortex of the oocyte at stage 7 in response to the polarizing follicle cell signal, and this requires actin, but not microtubules. This suggests that posterior PAR-1 N1 polarizes the microtubule cytoskeleton. PAR-1 N1 localization is mediated by a cortical targeting domain and a conserved anterior-lateral exclusion signal in its C-terminal linker domain. PAR-1 is also required for the polarization of the C. elegans zygote and is recruited to the posterior cortex in an actin-dependent manner. Our results therefore identify a molecular parallel between axis formation in Drosophila and C. elegans and make Drosophila PAR-1 N1 the earliest known marker for the polarization of the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号