首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Selection of resistant bacteria at very low antibiotic concentrations   总被引:3,自引:0,他引:3  
The widespread use of antibiotics is selecting for a variety of resistance mechanisms that seriously challenge our ability to treat bacterial infections. Resistant bacteria can be selected at the high concentrations of antibiotics used therapeutically, but what role the much lower antibiotic concentrations present in many environments plays in selection remains largely unclear. Here we show using highly sensitive competition experiments that selection of resistant bacteria occurs at extremely low antibiotic concentrations. Thus, for three clinically important antibiotics, drug concentrations up to several hundred-fold below the minimal inhibitory concentration of susceptible bacteria could enrich for resistant bacteria, even when present at a very low initial fraction. We also show that de novo mutants can be selected at sub-MIC concentrations of antibiotics, and we provide a mathematical model predicting how rapidly such mutants would take over in a susceptible population. These results add another dimension to the evolution of resistance and suggest that the low antibiotic concentrations found in many natural environments are important for enrichment and maintenance of resistance in bacterial populations.  相似文献   

2.
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic‐resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic‐free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra‐ and inter‐domain communication in various ecosystems. This signalling by non‐clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.  相似文献   

3.
4.
Since the discovery and clinical application of antibiotics, pathogens and the human microbiota have faced a near continuous exposure to these selective agents. A well-established consequence of this exposure is the evolution of multidrug-resistant pathogens, which can become virtually untreatable. Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years. Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly expand our understanding of the interplay between antibiotics and the microbiome.  相似文献   

5.
The aim of the study was to demonstrate of whether the therapeutic effects of antibiotics depend on their in vitro activity in sub-inhibitory concentrations against staphylococci. Cloxacillin, gentamicin and lincomycin were used in the study. Groups of S. aureus strains, containing 6 strains with similar MIC values each but different sensitivity to sub-inhibitory antibiotic concentrations (sub-MIC) were selected (a total of 36 trains): i. strains increasing their sensitivity to phagocytosis and bactericidal activity of rabbit leukocytes after incubation with an antibiotic in 0.1 MIC concentration, ii. strains with sensitivity to the above factors unaffected by incubation with an antibiotic in 0.5 MIC concentration. The doses of staphylococci causing death of 90-100% of Swiss albino mice 10 days after i.p. infection were determined. The injected doses (LD 90-100) and various doses of antibiotics were used to determine ED50 values as well as the survival rate of the mice with experimental staphylococcal infections after treatment with these antibiotics. It was demonstrated that effective doses (ED 50) of the antiboitics were significantly lower when the antibiotics were administered once to mice infected with strains S. aureus sensitive to sub-MIC concentrations of the investigated antibiotics than for mice infected with strains resistant to their sub-MIC concentrations. Similar correlations were observed in mice which were given the antibiotics several times (for 7 days): the percentage of the surviving mice was higher in the group infected with sub-MIC sensitive strains. The therapeutic effect of cloxacillin, gentamicin and lincomycin demonstrated a significant correlation with the S. aureus strains used to induce the infections and their sensitivity, or lack of sensitivity in vitro, to phagocytosis and bactericdal activity of leukocytes in the presence of antibiotics in sub-MIC concentrations.  相似文献   

6.
Aim: To determine if exposure of Pseudomonas aeruginosa biofilms to chloraminated drinking water can lead to individual bacteria with resistance to antibiotics. Methods and Results: Biofilms of P. aeruginosa PA14 were grown in drinking water in a Kadouri drip‐fed reactor; the biofilms were treated with either 0·5 mg l‐1 or 1·0 mg l‐1 of chloramine for 15 or 21 days; control biofilms were grown in water without chloramine. Fewer isolates with antibiotic resistance were obtained from the chloramine‐treated biofilms as compared to the control. Minimum inhibitory concentrations (MIC) for selected antibiotic‐resistant isolates were determined using ciprofloxacin, tobramycin, gentamicin, rifampicin and chloramphenicol. All of the isolates tested had increased resistance over the wildtype to ciprofloxacin, rifampicin and chloramphenicol, but were not resistant to tobramycin or gentamicin. Conclusions: Under these test conditions, there was no detectable increase in antibiotic resistance in P. aeruginosa exposed as biofilms to disinfectant residues in chloraminated drinking water. Significance and Impact of the study: Chloramine in drinking water, while unable to kill biofilm bacteria, does not increase the potential of P. aeruginosa to become resistant to antibiotics.  相似文献   

7.
Natural products, including honey, total alkaloids of Sophora alopecuroides (TASA) and matrine have been used in combination with antibiotics against various pathogenic bacteria. However, there are limited data on the antibacterial activity of these natural products in combination against multidrug-resistant Pseudomonas aeruginosa strains. The in vitro activity of honey, TASA and matrine alone and in combination with antibiotics against P. aeruginosa isolates was investigated. In this study, four biofilm-producing P. aeruginosa isolates, which were resistant to multiple antibiotics, were used. These natural products were not the most effective single agent against four isolates. The fractional inhibitory concentration index method revealed the synergistic effect of matrine and TASA-honey in combination with ciprofloxacin (Cip) against all tested isolates. When these combinations were used, the resistance of isolates to Cip was decreased significantly (six to eightfold reduction in the minimum inhibitory concentration of Cip. The disk diffusion method showed that all isolates were resistant to β-lactams. Combinations of these antibiotics with TASA and matrine changed slightly the activity of either antibiotic used as a single agent. All isolates produced metallo-β-lactamase enzymes (MBL). Pretreatment isolates with Cip-matrine and Cip-TASA-honey resulted in a statistically downregulated expression of the mexA gene. These natural products can be used against overactivating MexAB-OprM but not MBL-producing P. aeruginosa isolates.  相似文献   

8.
Bacteriophage (phage) therapy in combination with antibiotic treatment serves as a potential strategy to overcome the continued rise in antibiotic resistance across bacterial pathogens. Understanding the impacts of evolutionary and ecological processes to the phage-antibiotic-resistance dynamic could advance the development of such combinatorial therapy. We tested whether the acquisition of mutations conferring phage resistance may have antagonistically pleiotropic consequences for antibiotic resistance. First, to determine the robustness of phage resistance across different phage strains, we infected resistant Escherichia coli cultures with phage that were not previously encountered. We found that phage-resistant E. coli mutants that gained resistance to a single phage strain maintain resistance to other phages with overlapping adsorption methods. Mutations underlying the phage-resistant phenotype affects lipopolysaccharide (LPS) structure and/or synthesis. Because LPS is implicated in both phage infection and antibiotic response, we then determined whether phage-resistant trade-offs exist when challenged with different classes of antibiotics. We found that only 1 out of the 4 phage-resistant E. coli mutants yielded trade-offs between phage and antibiotic resistance. Surprisingly, when challenged with novobiocin, we uncovered evidence of synergistic pleiotropy for some mutants allowing for greater antibiotic resistance, even though antibiotic resistance was never selected for. Our results highlight the importance of understanding the role of selective pressures and pleiotropic interactions in the bacterial response to phage-antibiotic combinatorial therapy.  相似文献   

9.
10.
For many years, device-associated infections and particularly device-associated nosocomial infections have been of considerable concern. Recently, this concern was heightened as a result of increased antibiotic resistance among the common causal agents of nosocomial infections, the appearance of new strains which are intrinsically resistant to the antibiotics of choice, and the emerging understanding of the role biofilms may play in device-associated infections and the development of increased antibiotic resistance. Pseudomonas aeruginosa and Candida albicans are consistently identified as some of the more important agents of nosocomial infections. In light of the recent information regarding device-associated nosocomial infections, understanding the nature of P. aeruginosa and C. albicans infections is increasingly important. These two microorganisms demonstrate: (1) an ability to form biofilms on the majority of devices employed currently, (2) increased resistance/tolerance to antibiotics when associated with biofilms, (3) documented infections noted for virtually all indwelling devices, (4) opportunistic pathogenicity, and (5) persistence in the hospital environment. To these five demonstrated characteristics, two additional areas of interest are emerging: (a) the as yet unclear relationship of these two microorganisms to those species of highly resistant Pseudomonas spp and Candida spp that are of increasing concern with device-related infections, and (b) the recent research showing the dynamic interaction of P. aeruginosa and C. albicans in patients with cystic fibrosis. An understanding of these two opportunistic pathogens in the context of their ecosystems/biofilms also has significant potential for the development of novel and effective approaches for the control and treatment of device-associated infections.  相似文献   

11.
The development of bacterial resistance to antibiotics is one of the best documented examples of contemporary biological evolution. Variability in the mechanisms of resistance depends on the diversity of genotypes in the huge bacterial populations, and also on the diversity of selective pressures that are produced along the antibiotic concentration gradients formed in the highly compartmentalized human body during therapy. These antibiotic gradients can be conceived as comprising selective compartments, each one of them defined as the concentration able to select a particular genetic variant. In vitro experimental models confirm that some antibiotic resistant variants are selected only at certain selective concentrations of antibiotics. The correspondence between selective compartments and selectable variants could offer a way of describing more accurately the antibiotic selective landscapes and for taking measures to prevent the development of a major threat to the future of modern medicine.  相似文献   

12.
Tailored nanoparticles offer a novel approach to fight antibiotic‐resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram‐negative Stenotrophomonas maltophilia [Sm‐SeNPs(?)] and Gram‐positive Bacillus mycoides [Bm‐SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm‐SeNPs(?) and Bm‐SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch‐SeNPs). Dendritic cells and fibroblasts exposed to Sm‐SeNPs(?), Bm‐SeNPs(+) and Ch‐SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro‐inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents.  相似文献   

13.
Acquired antibiotic resistance among dangerous bacterial pathogens is an increasing medical problem. While in Mycobacterium tuberculosis this occurs by mutation in the genes encoding the targets for antibiotic action, other pathogens have generally gained their resistance genes by horizontal gene transfer from non‐pathogenic bacteria. The ultimate source of many of these genes is almost certainly the actinomycetes that make the antibiotics and therefore need self‐protective mechanisms to avoid suicide. How do they ensure that they are resistant at the time when intracellular antibiotic concentrations reach potentially lethal levels? In this issue of Molecular Microbiology, Tahlan et al. describe a solution to this problem in which an antibiotically inactive precursor of a Streptomyces coelicolor antibiotic induces resistance – in this example by means of a trans‐membrane export pump – so that the organism is already primed for resistance at the time when it is needed. The authors generalize their interpretation to other cases where antibiotic resistance depends on export, but it will be interesting to find out whether it could in fact apply more widely, to include the other major mechanisms of resistance: target modification and the synthesis of antibiotics via a series of chemically modified intermediates, with removal of the protective group at the time of secretion into the outside medium.  相似文献   

14.
15.
Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms’ evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.

This study shows that pyocyanin, a toxin secreted by the opportunistic pathogen Pseudomonas aeruginosa, induces defense responses that decrease the efficacy of structurally-similar clinical antibiotics and accelerate the evolution of antibiotic resistance, both in the producer and in other members of clinically-relevant polymicrobial communities.  相似文献   

16.
Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.  相似文献   

17.
The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.  相似文献   

18.
Pseudomonas aeruginosa causes acute and chronic infections in humans and these infections are difficult to treat due to the bacteria’s high-level of intrinsic and acquired resistance to antibiotics. To address this problem, it is crucial to investigate the molecular mechanisms of antibiotic resistance in this organism. In this study, a P. aeruginosa transposon insertion library of 17000 clones was constructed and screened for altered susceptibility to seven antibiotics. Colonies grown on agar plates containing antibiotics at minimum inhibitory concentrations (MICs) and those unable to grow at 1/2 MIC were collected. The transposon-disrupted genes in 43 confirmed mutants that showed at least a three-fold increase or a two-fold decrease in susceptibility to at least one antibiotic were determined by semi-random PCR and subsequent sequencing analysis. In addition to nine genes known to be associated with antibiotic resistance, including mexI, mexB and mexR, 24 new antibiotic resistance-associated genes were identified, including a fimbrial biogenesis gene pilY1 whose disruption resulted in a 128-fold increase in the MIC of carbenicillin. Twelve of the 43 genes identified were of unknown function. These genes could serve as targets to control or reverse antibiotic resistance in this important human pathogen.  相似文献   

19.
Intermedilysin is a cytolytic toxin produced by Streptococcus intermedius, a pathogen of humans. In vitro studies showed that exposure of S. intermedius to sub-minimum inhibitory concentration (MIC) levels (1/2 MIC) of protein-inhibiting antibiotics and nucleic acid-inhibiting antibiotics decreased intermedilysin release by S. intermedius. The most potent antibiotic was clindamycin. On the other hand, exposure to cell wall-inhibiting antibiotics generally showed insignificant changes in intermedilysin release at sub-MIC concentrations. Investigations into possible mechanisms underlying this sub-MIC effect with clindamycin showed that there was selective decrease in biosynthesis and release of toxin after exposure to 1/2 MIC condition. However, no significant differences in the mRNA levels of the intermedilysin gene were observed.  相似文献   

20.
The cyanobacterium Microcystis aeruginosa causes most of the harmful toxic blooms in freshwater ecosystems. Some strains of M. aeruginosa tolerate low‐medium levels of salinity, and because salinization of freshwater aquatic systems is increasing worldwide it is relevant to know what adaptive mechanisms allow tolerance to salinity. The mechanisms involved in the adaptation of M. aeruginosa to salinity (acclimation vs. genetic adaptation) were tested by a fluctuation analysis design, and then the maximum capacity of adaptation to salinity was studied by a ratchet protocol experiment. Whereas a dose of 10 g NaCl L?1 completely inhibited the growth of M. aeruginosa, salinity‐resistant genetic variants, capable of tolerating up to 14 g NaCl L?1, were isolated in the fluctuation analysis experiment. The salinity‐resistant cells arose by spontaneous mutations at a rate of 7.3 × 10?7 mutants per cell division. We observed with the ratchet protocol that three independent culture populations of M. aeruginosa were able to adapt to up to 15.1 g L?1 of NaCl, suggesting that successive mutation‐selection processes can enhance the highest salinity level to which M. aeruginosa cells can initially adapt. We propose that increasing salinity in water reservoirs could lead to the selection of salinity‐resistant mutants of M. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号