首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine food webs are highly compartmentalized, and characterizing the trophic niches among consumers is important for predicting how impact from human activities affects the structuring and functioning of marine food webs. Biomarkers such as bulk stable isotopes have proven to be powerful tools to elucidate trophic niches, but they may lack in resolution, particularly when spatiotemporal variability in a system is high. To close this gap, we investigated whether carbon isotope (δ13C) patterns of essential amino acids (EAAs), also termed δ13CAA fingerprints, can characterize niche differentiation in a highly dynamic marine system. Specifically, we tested the ability of δ13CAA fingerprints to differentiate trophic niches among six functional groups and ten individual species in the Baltic Sea. We also tested whether fingerprints of the common zooplanktivorous fishes, herring and sprat, differ among four Baltic Sea regions with different biochemical conditions and phytoplankton assemblages. Additionally, we investigated how these results compared to bulk C and N isotope data for the same sample set. We found significantly different δ13CAA fingerprints among all six functional groups. Species differentiation was in comparison less distinct, due to partial convergence of the species' fingerprints within functional groups. Herring and sprat displayed region‐specific δ13CAA fingerprints indicating that this approach could be used as a migratory marker. Niche metrics analyses showed that bulk isotope data had a lower power to differentiate between trophic niches than δ13CAA fingerprinting. We conclude that δ13CAA fingerprinting has a strong potential to advance our understanding of ecological niches, and trophic linkages from producers to higher trophic levels in dynamic marine systems. Given how management practices of marine resources and habitats are reshaping the structure and function of marine food webs, implementing new and powerful tracer methods are urgently needed to improve the knowledge base for policy makers.  相似文献   

2.
Using bulk tissue and fatty acid 13C analysis we investigated major trophic pathways from soil microorganisms to microbial consumers to predators in conventional versus organic farming systems planted for the first time with maize. Organic farming led to an increase in microbial biomass in particular that of fungi as indicated by phospholipid fatty acids (PLFAs). Microbial PLFAs reflected the conversion from C3 to C4 plants by a shift in δ13C of 2‰, whereas the isotopic signal in fatty acids (FAs) of Collembola was much more pronounced. In the euedaphic Protaphorura fimata the δ13C values in maize fields exceeded that in C3 (soybean) fields by up to 10‰, indicating a close relationship between diet and vegetation cover. In the epedaphic Orchesella villosaδ13C values shifted by 4‰, suggesting a wider food spectrum including carbon of former C3 crop residues. Differences in δ13C of corresponding FAs in consumers and resources were assessed to assign food web links. P. fimata was suggested as root and fungal feeder in soybean fields, fungal feeder in conventional and leaf consumer in organically managed maize fields. O. villosa likely fed on root and bacteria under soybean, and bacteria and fungi under maize. Comparison of δ13C values in FAs of the cursorial spider Pardosaagrestis and O. villosa implied the latter as important prey species in soybean fields. In contrast, the web‐building spider Mangora acalypha showed no predator–prey relationship with Collembola. The determination of δ13C values in trophic biomarker FAs allowed detailed insight into the structure of the decomposer food web and identified diet‐shifts in both consumers at the base of the food web and in top predators in organic versus conventional agricultural systems. The results indicate changes in major trophic links and therefore carbon flux through the food web by conversion of conventional into organic farming systems.  相似文献   

3.
1. Carbon isotope ratios (δ13CD) of a herbivorous zooplankter, Daphnia middendorfiana and several environmental variables were investigated during four annual production cycles (1988–92) in Smith Lake, Alaska to determine factors that affect the seasonal and interannual variability of δ13CD. 2. δ13CD varied from ?44.7 to ?31.5 ppt and was significantly correlated with Chl a (r = 0.66, P = 0.0001), weakly correlated with CO2(aq) (r = 0.31, P = 0.07) and uncorrelated with δ13CDIC (r = 0.10, P = 0.70). Carbon isotope fractionation was minimal when Chl a appeared to be optimal. The largest 13C fractionation was associated with the lowest Chl a during early and mid winter periods. 3. δ13CD was also significantly correlated with water temperature (r = 0.480, P = 0.0001) and photoperiod (r = 0.62, P = 0.0001), probably suggesting a critical role of physical forcing, particularly solar energy input, in affecting algal photosynthesis and δ13CD in this subarctic lake. 4. There was a large interannual variability of δ13CD among ice-cover periods which was partly explained by interwinter differences in the amount of snowfall that affected the flux of solar irradiance to the ice-covered lake. 5. Other explanations for δ13CD variability such as species succession, changes in algal cell size and differential use of CO2(aq) and HCO3 were also considered, but cannot account for the observations reported here.  相似文献   

4.
《Experimental mycology》1986,10(2):83-88
Haploid strains 15.10, 1.C429, and 1.C2y and diploid strain JK2 ofUstilago violacea were grown on one or more of the following carbon sources: glucose, sucrose, maltose, inulin, starch, inositol, glycerol, casein, and yeast extract. The media, both before and after fungal growth, and the fungal cells were analyzed for 13C/12C content (δ13C values) using an isotope ratio mass spectrometer after combustion to CO2. In all cases, the used and unused media had identical δ13C values. Strain 15.10 had significantly less13C than the media when grown on glucose, sucrose, maltose, and inositol; significantly more13C when grown on inulin, starch, and glycerol; and no significant difference in δ13C values when grown on casein and yeast extract media. Other haploid strains responded similarly to 15.10. Diploid strain JK2 was also depleted in13C when grown on glucose and enriched in13C when grown on glycerol; however, JK2 was slightly depleted in13C when grown on casein, whereas all the tested haploid strains were enriched in13C.  相似文献   

5.
Question: The relationship between carbon‐13 in soil organic matter and C3 and C4 plant abundance is complicated because of differential productivity, litter fall and decomposition. As a result, applying a mass balance equation to δ13C data from soils cannot be used to infer past C3 and C4 plant abundance; only the proportion of carbon derived from C3 and C4 plants can be estimated. In this paper, we compare δ13C of surface soil samples with vegetation data, in order to establish whether the ratio of C3:C4 plants (rather than the proportion of carbon from C3 and C4 plants) can be inferred from soil δ13C. Location: The Tsavo National Park, in southeastern Kenya. Methods: We compare vegetation data with δ13C of organic matter in surface soil samples and derive regression equations relating the δ13C of soil organic matter to C3:C4 plant abundance. We use these equations to interpret δ13C data from soil profiles in terms of changes in inferred C3:C4 plant ratio. We compare our method of interpretation with that derived from a mass balance approach. Results: There was a statistically significant, linear relationship between the δ13C of organic matter in surface soil samples and the natural logarithm of the ratio of C3:C4 plants in the 100m2 surrounding the soil sample. Conclusions: We suggest that interpretation of δ13C data from organic matter in soil profiles can be improved by comparing vegetation surveys with δ13C of organic matter in surface soil samples. Our results suggest that past C3 plant abundance might be under‐estimated if a mass balance approach is used.  相似文献   

6.
Accurate modelling of long‐term changes in plant stomatal functioning is vital to global climate change studies because changes in evapotranspiration influence temperature via physiological forcing of the climate. Various stomatal models are included in land surface schemes, but their robustness over longer timescales is difficult to validate. We compare the performance of three stomatal models, varying in their degree of complexity, and coupled to a land surface model. This is carried out by simulating the carbon isotope ratio of tree leaves (δ13Cleaf) over a period of 53 years, and comparing the results with carbon isotope ratios obtained from tree rings (δ13Cstem) measured at six sites in northern Europe. All three stomatal models fail to capture the observed interannual variability in the measured δ13Cstem time series. However, the Soil‐Plant‐Atmosphere (SPA) model performs significantly better than the Ball‐Berry (BB) or COX models when tested for goodness‐of‐fit against measured δ13Cstem. The δ13Cleaf time series simulated using the SPA model are significantly positively correlated (P < 0.05) with measured results over the full time period tested, at all six sites. The SPA model underestimates interannual variability measured in δ13Cstem, but is no worse than the BB model and significantly better than the COX model. The inability of current models to adequately replicate changes in stomatal response to rising levels of CO2 concentrations, and thus to quantify the associated physiological forcing, warrants further investigation.  相似文献   

7.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

8.
Understanding the response of long-lived species to natural climatic variability at multiple scales is a prerequisite for forecasting ecosystem responses to global climate change. This study investigated the response of piñon pine (Pinus edulis) to natural climatic variability using information on physiology and growth as recorded in leaves and tree rings. δ13C of annual leaf cohorts (δ13Cleaf) and tree rings (δ13Cring) were measured at an ecotonal/xeric site and a mid-range/mesic site. Ring width indices (RWI) were used to estimate annual growth of individual trees. Relationships between seasonal and annual climate parameters and δ13C and growth were investigated. δ13C–climate relationships were stronger for δ13Cleaf than for δ13Cring especially at the xeric site. The mean monthly maximum summer temperatures over May through September (summer T max) had the strongest influence on δ13Cleaf. There was a strong negative relationship between RWI with summer T max and a strong positive relationship between RWI with October to October precipitation (water–year PPN) at both sites. This suggests that piñon pine populations could be vulnerable to decreased growth and, perhaps mortality, in response to warmer, drier conditions predicted by models of global climate change.  相似文献   

9.
Conventional tags applied to individuals have been used to investigate animal movement, but these methods require tagged individuals be recaptured. Maps of regional isotopic variability known as “isoscapes” offer potential for various applications in migration research without tagging wherein isotope values of tissues are compared to environmental isotope values. In this study, we present the spatial variability in oxygen () and dissolved inorganic carbon (δ13CDIC) isotope values of Baltic Sea water. We also provide an example of how these isoscapes can reveal locations of individual animal via spatial probability surface maps, using the high‐resolution salmon otolith isotope data from salmon during their sea‐feeding phase in the Baltic Sea. A clear latitudinal and vertical gradient was found for both and δ13CDIC values. The difference between summer and winter in the Baltic Sea values was only slight, whereas δ13CDIC values exhibited substantial seasonal variability related to algal productivity. Salmon otolith δ18Ooto and δ13Coto values showed clear differences between feeding areas and seasons. Our example demonstrates that dual isotope approach offers great potential for estimating probable fish habitats once issues in model parameterization have been resolved.  相似文献   

10.
Measurements of the carbon (δ13Cm) and oxygen (δ18Om) isotope composition of C3 plant tissue provide important insights into controls on water‐use efficiency. We investigated the causes of seasonal and inter‐annual variability in water‐use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf‐scale) and eddy covariance measurements (ecosystem‐scale). The positive relationship between δ13Cm and δ18Om values for samples collected during 1998–2001 indicated that variation in stomatal conductance and water stress‐induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ13Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ13Cm and δ18Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water‐use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci/ca during the drier conditions of 2000. Calculated values of leaf‐scale water‐use efficiency were 2–3 times higher than ecosystem‐scale water‐use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements.  相似文献   

11.
Objective : Development of a model for the prediction of δ13Cprotein from δ13Ccollagen and Δ13Cap‐co. Model‐generated values could, in turn, serve as “consumer” inputs for multisource mixture modeling of paleodiet. Methods : Linear regression analysis of previously published controlled diet data facilitated the development of a mathematical model for predicting δ13Cprotein (and an experimentally generated error term) from isotopic data routinely generated during the analysis of osseous remains (δ13Cco and Δ13Cap‐co). Results : Regression analysis resulted in a two‐term linear model (δ13Cprotein (%) = (0.78 × δ13Cco) ? (0.58× Δ13Cap‐co) ? 4.7), possessing a high R‐value of 0.93 (r2 = 0.86, P < 0.01), and experimentally generated error terms of ±1.9% for any predicted individual value of δ13Cprotein. This model was tested using isotopic data from Formative Period individuals from northern Chile's Atacama Desert. Conclusions : The model presented here appears to hold significant potential for the prediction of the carbon isotope signature of dietary protein using only such data as is routinely generated in the course of stable isotope analysis of human osseous remains. These predicted values are ideal for use in multisource mixture modeling of dietary protein source contribution. Am J Phys Anthropol 157:694–703, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Leaf respiration in the dark and its C isotopic composition (δ13CR) contain information about internal metabolic processes and respiratory substrates. δ13CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated 13C‐enriched organic acids, however, studies simultaneously measuring δ13CR during LEDR and potential respiratory substrates are rare. We determined δ13CR and respiration rates (R) during LEDR, as well as δ13C and concentrations of potential respiratory substrates using compound‐specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ13CR and R patterns during LEDR were strongly species‐specific and showed an initial peak, which was followed by a progressive decrease in both values. The species‐specific differences in δ13CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were 13C‐enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ13C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong 13C enrichment in leaf dark‐respired CO2.  相似文献   

13.
Compound‐specific stable isotope analysis (CSIA) of amino acids (AAs) has been rapidly incorporated in ecological studies to resolve consumer trophic position (TP). Differential 15N fractionation of “trophic” AAs, which undergo trophic 15N enrichment, and “source” AAs, which undergo minimal trophic 15N enrichment and serve as a proxy for primary producer δ15N values, allows for internal calibration of TP. Recent studies, however, have shown the difference between source and trophic AA δ15N values in higher marine consumers is less than predicted from empirical studies of invertebrates and fish. To evaluate CSIA‐AA for estimating TP of cetaceans, we compared source and trophic AA δ15N values of multiple tissues (skin, baleen, and dentine collagen) from five species representing a range of TPs: bowhead whales, beluga whales, short‐beaked common dolphins, sperm whales, and fish‐eating (FE) and marine mammal‐eating (MME) killer whale ecotypes. TP estimates (TPCSIA) using several empirically derived equations and trophic discrimination factors (TDFs) were 1–2.5 trophic steps lower than stomach content‐derived estimates (TPSC) for all species. Although TPCSIA estimates using dual TDF equations were in better agreement with TPSC estimates, our data do not support the application of universal or currently available dual TDFs to estimate cetacean TPs. Discrepancies were not simply due to inaccurate TDFs, however, because the difference between consumer glutamic acid/glutamine (Glx) and phenylalanine (Phe) δ15N values (δ15NGlx‐Phe) did not follow expected TP order. In contrast to pioneering studies on invertebrates and fish, our data suggest trophic 15N enrichment of Phe is not negligible and should be examined among the potential mechanisms driving “compressed” and variable δ15NGlx‐Phe values at high TPs. We emphasize the need for controlled diet studies to understand mechanisms driving AA‐specific isotopic fractionation before widespread application of CSIA‐AA in ecological studies of cetaceans and other marine consumers.  相似文献   

14.
Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ13C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ13C signatures. In the photic zone, the δ13Corg signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ13C signatures similar to DIC in the overlying water column (?2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate‐reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter‐scale variability in the δ13Corg signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ13Corg signatures; these processes need to be considered when attempting to relate observed isotopic signatures in ancient sedimentary strata to conditions in the overlying water column at the time of deposition and associated inferences about carbon cycling.  相似文献   

15.
Increasing sea surface temperatures (SST) and blooms of lipid‐poor, filamentous cyanobacteria can change mesozooplankton metabolism and foraging strategies in marine systems. Lipid shortage and imbalanced diet may challenge the build‐up of energy pools of lipids and proteins, and access to essential fatty acids (FAs) and amino acids (AAs) by copepods. The impact of cyanobacterial blooms on individual energy pools was assessed for key species temperate Temora longicornis and boreal Pseudo‐/Paracalanus spp. that dominated field mesozooplankton communities isolated by seasonal stratification in the central Baltic Sea during the hot and the cold summer. We looked at (a) total lipid and protein levels, (b) FA trophic markers and AA composition, and (c) compound‐specific stable carbon isotopes (δ13C) in bulk mesozooplankton and in a subset of parameters in particulate organic matter. Despite lipid‐poor cyanobacterial blooms, the key species were largely able to cover both energy pools, yet a tendency of lipid reduction was observed in surface animals. Omni‐ and carnivory feeding modes, FA trophic makers, and δ13C patterns in essential compounds emphasized that cyanobacterial FAs and AAs have been incorporated into mesozooplankton mainly via feeding on mixo‐ and heterotrophic (dino‐) flagellates and detrital complexes during summer. Foraging for essential highly unsaturated FAs from (dino‐) flagellates may have caused night migration of Pseudo‐/Paracalanus spp. from the deep subhalocline waters into the upper waters. Only in the hot summer (SST>19.0°C) was T. longicornis submerged in the colder subthermocline water (~4°C). Thus, the continuous warming trend and simultaneous feeding can eventually lead to competition on the preferred diet by key copepod species below the thermocline in stratified systems. A comparison of δ13C patterns of essential AAs in surface mesozooplankton across sub‐basins of low and high cyanobacterial biomasses revealed the potential of δ13C‐AA isoscapes for studies of commercial fish feeding trails across the Baltic Sea food webs.  相似文献   

16.
The use of efficient selection traits for screening under contrasting irrigation water salinity is a challenge for breeders. To identify patterns, grain yield (GY) and yield components (kernels m?2, thousand kernels weight), growth traits (plant height, biomass), flag leaf ion accumulation (Na+ and K+), carbon isotope composition (δ13Cgrain) and nitrogen concentration (Ngrain) of grains were assessed on 25 durum wheat genotypes (G) in two consecutive growing seasons (2010 and 2011), in three semi‐arid locations in Tunisia. Each location differed in their irrigation water salinity as measured by electrical conductivity: Echbika (S1, 6 dS m?1), Barrouta (S2, 12 dS m?1) and Sidi Bouzid (S3, 18 dS m?1). GY was shown to be negatively correlated to Ngrain as well as to δ13Cgrain. This is confirmed by a multiple linear regression analysis that showed that both δ13Cgrain and Ngrain were the major determinant components for GY variability under S3. A high genotypic variability was observed and the improved genotype Maali exhibited the most stable GY under the three irrigation water salinities and the two cropping seasons. Maali showed the lowest δ13Cgrain. This indicates that tolerance in durum wheat is likely to be correlated to the ability of maintaining a high stomatal conductance. According to our data suggests δ13Cgrain can be used for an efficient screening of salt tolerant durum wheat. Under our experimental conditions, Ngrain was shown to be highly correlated to δ13Cgrain and can therefore be easier‐to‐use trait to assess the tolerance to salinity.  相似文献   

17.
Microbial mats that inhabit gypsum deposits in ponds at Guerrero Negro, Baja California Sur, Mexico, developed distinct pigmented horizons that provided an opportunity to examine the fixation and flow of carbon through a trophic structure and, in conjunction with previous phylogenetic analyses, to assess the diagenetic fates of molecular δ13C biosignatures. The δ13C values of individual biomarker lipids, total carbon, and total organic carbon (TOC) were determined for each of the following horizons: tan‐orange (TO) at the surface, green (G), purple (P), and olive‐black (OB) at the bottom. δ13C of individual fatty acids from intact polar lipids (IPFA) in TO were similar to δ13C of dissolved inorganic carbon (DIC) in the overlying water column, indicating limited discrimination by cyanobacteria during CO2 fixation. δ13CTOC of the underlying G was 3‰ greater than that of TO. The most δ13C‐depleted acetogenic lipids in the upper horizons were the cyanobacterial biomarkers C17 n‐alkanes and polyunsaturated fatty acids. Bishomohopanol was 4 to 7‰ enriched, relative to alkanes and intact polar fatty acids (IPFA), respectively. Acyclic C20 isoprenoids were depleted by 14‰ relative to bishomohopanol. Significantly, ?[δ13CTOC ? δ13C∑IPFA] increased from 6.9‰ in TO to 14.7‰ in OB. This major trend might indicate that 13C‐enriched residual organic matter accumulated at depth. The permanently anoxic P horizon was dominated by anoxygenic phototrophs and sulfate‐reducing bacteria. P hosted an active sulfur‐dependent microbial community. IPFA and bishomohopanol were 13C‐depleted relative to upper crust by 7 and 4‰, respectively, and C20 isoprenoids were somewhat 13C‐enriched. Synthesis of alkanes in P was evidenced only by 13C‐depleted n‐octadecane and 8‐methylhexadecane. In OB, the marked increase of total inorganic carbon δ13C (δ13CTIC) of >6‰ perhaps indicated terminal mineralization. This δ13CTIC increase is consistent with degradation of the osmolyte glycine betaine by methylotrophic methanogens and loss of 13C‐depleted methane from the mat.  相似文献   

18.
Cyclopoids were collected from 18 reservoirs in southern China during August (a wet month) and December (a dry month) of 2010 for the analysis of carbon and nitrogen stable isotopes (δ13CZoo and δ15NZoo). The objectives of this study were to examine whether δ13CZoo and δ15NZoo can be better indicators of primary productivity and trophic state than the stable isotope composition of suspended particulate organic matter (POM), and to evaluate the relationship between δ13CZoo and δ15NZoo and select environmental variables. The δ13CZoo in these reservoirs was enriched in August and depleted in December, and varied significantly along the continuum of trophic levels. By contrast, δ15NZoo was depleted in August and enriched in December, and did not increase significantly with an increase in trophic state. Both δ13CZoo and δ15NZoo were more strongly correlated with environmental factors than δ13CPOM and δ15NPOM were. In addition, more environmental factors were significantly correlated with δ13CZoo and the δ15NZoo than with δ13CPOM and δ15NPOM. When data from two seasons were pooled, δ13CZoo was strongly correlated with dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and the DIN:SRP ratio, while δ15NZoo was weakly correlated with nutrient concentrations. This study indicates that, compared to the stable isotope composition of POM, δ13CZoo is a better indicator of primary productivity and trophic state, while δ15NZoo may be used as a proxy for nitrogen sources in aquatic ecosystems.  相似文献   

19.
《Fungal biology》2019,123(6):456-464
We compared the δ13C and δ15N of forest material with an extensive sporocarp collection to elucidate the role of litter, wood and soil as fungal carbon and nitrogen sources in Finnish boreal Picea abies-dominated forests. Ectomycorrhizal Hydnum and Cortinarius had higher δ15N than other ectomycorrhizal fungi, suggesting use of 15N-enriched, deeper nitrogen. Russula had lower δ15N than other ectomycorrhizal fungi and resembled some litter decay genera, suggesting use of litter-derived nitrogen. There was little variation in δ15N among other genera of ectomycorrhizal fungi, indicating limited functional diversity in nitrogen use. Saprotrophic Leotia, Gymnopus, Hypholoma, Pholiota, Rhodocollybia and Calocera had δ15N values similar to ectomycorrhizal fungi, indicating overlap in use of older nitrogen from soil or roots or use of newly fixed nitrogen. Genera of litter and wood decay fungi varied up to 6‰ in δ13C and 10‰ in δ15N, suggesting large differences in carbon and nitrogen sources and processing. Similar δ13C between white and brown rot wood decay fungi also suggest that white rot fungi do not use lignin-derived carbon. Together, these δ13C and δ15N patterns of fungi from Finnish boreal forests enhance our knowledge of fungal functional diversity and indicate broad use of litter, wood and soil resources.  相似文献   

20.
Genetic selection for whole‐plant water use efficiency (yield per transpiration; WUEplant) in any crop‐breeding programme requires high‐throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13Cleaf) has been suggested as a potential time‐integrated proxy for WUEi that may provide a tool to screen for WUEplant. However, a genetic link between δ13Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13Cleaf and WUEplant under well watered and water‐limited growth conditions, a high‐throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were found and co‐localized with transpiration, biomass accumulation, and WUEplant. Additionally, WUEplant for each of the δ13Cleaf QTL allele classes was negatively correlated with δ13Cleaf, as would be predicted when WUEi influences WUEplant. These results demonstrate that δ13Cleaf is genetically linked to WUEplant, likely to be through their relationship with WUEi, and can be used as a high‐throughput proxy to screen for WUEplant in these C4 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号