首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This study aimed at evaluating the role of cyanobacteria and their associated aerobic heterotrophic bacteria in biodegradation of petroleum compounds. We investigated the potential of ten non-axenic typical mat-forming cyanobacterial strains to degrade phenanthrene, pristane, n-octadecane, and dibenzothiophene. Five strains (Aphanothece halophyletica, Dactyolococcopsis salina, Halothece strain EPUS, Oscillatoria strain OSC, and Synechocystis strain UNIGA) were able to degrade n-alkanes. In case of the other five strains (Microcoleus chthonoplastes, Oscillatoria sp. MPI 95 OS 01, Halothece strain EPUG, Halomicronema exentricum, and Phormidium strain UNITF) alkanes were not significantly affected. Moderate changes in the concentration of the aromatic compounds were observed for three isolates only. In follow-up experiments with Oscillatoria strain OSC, we demonstrated that the cyanobacteria-associated aerobic heterotrophic bacteria were responsible for the observed biodegradation. The cyanobacteria themselves apparently do not degrade petroleum compounds, but more likely play a significant, indirect role in biodegradation by supporting the growth and activity of the actual degraders.  相似文献   

3.
The electron transfer from the primary donor special pair to the primary acceptor bacteriopheophytin in bacterial photosynthesis, as probed by femtosecond spectroscopy, is discussed in terms of the following four issues: unidirectionality; single-step superexchange versus the two-step sequential mechanism; the temperature dependence of the electron-transfer rate; and the improved methodology for examining the primary events in photosynthesis. New methods are still required to address the recently observed non-single exponential decay of the initial excited state of photosynthesis. Without additional information, the mechanism of the primary charge separation chemistry will remain unsettled.  相似文献   

4.
Microbial reactions play key roles in biocatalysis and biodegradation. The recent genome sequencing of environmentally relevant bacteria has revealed previously unsuspected metabolic potential that could be exploited for useful purposes. For example, oxygenases and other biodegradative enzymes are benign catalysts that can be used for the production of industrially useful compounds. In conjunction with their biodegradative capacities, bacterial chemotaxis towards pollutants might contribute to the ability of bacteria to compete with other organisms in the environment and to be efficient agents for bioremediation. In addition to the bacterial biomineralization of organic pollutants, certain bacteria are also capable of immobilizing toxic heavy metals in contaminated aquifers, further illustrating the potential of microorganisms for the removal of pollutants.  相似文献   

5.
Hemicellulose degradation by rumen bacteria   总被引:21,自引:0,他引:21  
  相似文献   

6.
Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation.  相似文献   

7.
CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H(2)O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately -240 mV) and low-spin (approximately -110, -190 and -265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (E(m) = -80 mV) in the presence of NADH (E(m) = -320 mV) and an NADH-menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.  相似文献   

8.
Biodegradation of organic pollutants by halophilic bacteria and archaea   总被引:2,自引:0,他引:2  
Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.  相似文献   

9.
The microbial degradation of lignin has been well studied in white-rot and brown-rot fungi, but is much less well studied in bacteria. Recent published work suggests that a range of soil bacteria, often aromatic-degrading bacteria, are able to break down lignin. The enzymology of bacterial lignin breakdown is currently not well understood, but extracellular peroxidase and laccase enzymes appear to be involved. There are also reports of aromatic-degrading bacteria isolated from termite guts, though there are conflicting reports on the ability of termite gut micro-organisms to break down lignin. If biocatalytic routes for lignin breakdown could be developed, then lignin represents a potentially rich source of renewable aromatic chemicals.  相似文献   

10.
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.  相似文献   

11.
Protein degradation by human intestinal bacteria   总被引:24,自引:0,他引:24  
Analysis of human gut contents showed that substantial quantities of soluble protein, ammonia and branched chain volatile fatty acids occurred throughout the large intestine [0.1-24.4 g (kg contents)-1, 7.7-66.0 mmol (kg contents)-1 and 1.5-11.1 mmol (kg contents)-1 respectively]. The presence of these metabolites suggested that substantial proteolysis was occurring. In vitro studies showed that casein and bovine serum albumin were partly degraded in slurries of human faeces over a 96 h incubation period, to produce TCA-soluble peptides, ammonia and volatile fatty acids. Proteolytic activity detected in the stools of five individuals ranged from 3.5 to 19.8 mg azocasein hydrolysed h-1 (g faecal material)-1. Washed cell and washed particulate faecal fractions accounted for 24-67% of total activity. The predominant proteolytic bacteria in the faecal samples examined were identified as Bacteroides spp. [1.0 X 10(11)-1.3 X 10(12) (g dry wt faeces)-1] and Propionibacterium spp. [1.2 X 10(8)-1.0 X 10(10) (g dry wt faeces)-1]. Other proteolytic bacteria which occurred in lesser numbers were identified as belonging to the genera Streptococcus, Clostridium, Bacillus and Staphylococcus. These results demonstrate that the gut microflora could potentially play a major role in proteolysis in the human colon.  相似文献   

12.
植物-微生物联合对环境有机污染物降解的研究进展   总被引:5,自引:1,他引:5  
环境中有机污染物的过量积累对生态系统及人类健康造成严重威胁。近年来,许多学者研究发现植物-微生物联合作用对环境中有机污染物的去除及生态系统的修复具有非常显著的效果。本文主要从植物-内生菌、植物-菌根菌以及植物-根际微生物这三个层面详细阐述植物-微生物联合降解有机污染物的研究现状,分析植物-微生物在联合降解中的作用,揭示植物-微生物联合降解的机理。但就目前而言,植物-微生物联合降解有机污染物仍存在许多问题,植物-微生物联合降解有机污染物的机理及生态学效应仍不清楚。因此,还需要进一步探讨其潜在作用机制并加强应用实践,这将有助于污染生态系统的治理,促进环境可持续发展。  相似文献   

13.
细菌降解木质素的研究进展   总被引:5,自引:0,他引:5  
木质素是自然界最丰富的芳香化合物,其分解与陆地上碳循环密切相关。提取木质纤维素中的葡萄糖使其转化成乙醇,是生产第二代生物能源的关键步骤。但是由于木质素是一种非常稳定的化合物,难以降解是实现生物乙醇转化的主要屏障,因此关于木质素的生物降解研究具有非常重要的意义。真菌降解木质素的研究已经深入的进行了多年,并取得丰富的成果,但是关于细菌降解木质素的研究还处在初级阶段。由于广泛的生长条件和良好的环境适应能力,细菌在木质素降解方面深受研究人员的关注。本文通过总结前人的研究成果,讨论了木质素的降解机制、代谢途径及细菌降解木质素的工业应用前景,同时还展望了分子生物学及生物信息学在木质素降解方面的应用前景。  相似文献   

14.
丛毛单胞菌在环境污染物降解方面的研究进展   总被引:2,自引:0,他引:2  
赵燕  薛林贵  李琳  张红光 《微生物学通报》2012,39(10):1471-1478
环境污染物的微生物降解是环保领域研究的一个热点。研究发现,丛毛单胞菌对多种污染物有很好的降解效果。综述目前已分离的一些丛毛单胞菌对不同污染物的降解特性、代谢途径,并分析了影响其降解效果的各种因素,介绍应用现状并对前景进行展望。  相似文献   

15.
The degradation of dehydrodiisoeugenol (DDIE) by cow rumen bacteria was studied under strictly anaerobic conditions. After two days of cultivation, about 23% of DDIE (1.2 mM) was degraded to volatile fatty acids (VFA) such as acetic acid, propionic acid and butyric acid. The aromatic intermediates were vanillic acid, 5-methylvanillin and 3-methyl-4-hydroxybenzaldehyde, which suggested that the coumaran ring in DDIE was cleaved during degradation. These results indicate that the rumen anaerobes can degrade this lignin-related dimer to monoaromatic compounds and VFA.  相似文献   

16.
Anaerobic degradation of cresols by denitrifying bacteria   总被引:15,自引:0,他引:15  
The initial reactions in anaerobic metablism of methylphenols (cresols) and dimethylphenols were studied with denitrifying bacteria. A newly isolated strain, possibly a Paracoccus sp., was able to grow on o-or p-cresol as sole organic substrate with a generation time of 11 h; o-or p-cresol was completely oxidized to CO2 with nitrate being reduced to N2. A denitrifying Pseudomonas-like strain oxidized m-or p-cresol as the sole organic growth substrate completely to CO2 with a generation time of 14 h. Demonstration of intermediates and/or in vitro measurement of enzyme activities suggest the following enzymatic steps:(1) p-Cresol was metabolized by both strains via benzoyl-CoA as central intermediate as follows: p-cresol 4-OH-benzaldehyde 4-OH-benzoate 4-OH-benzoly-CoA benzoyl-CoA. Oxidation of the methyl group to 4-OH-benzaldehyde was catalyzed by p-cresol methylhydroxylase. After oxidation of the aldehyde to 4-OH-benzoate, 4-OH-benzoyl-CoA is formed by 4-OH-benzoyl-CoA synthetase; subsequent reductive dehydroxylation of 4-OH-benzoyl-CoA to benzoyl-CoA is catalyzed by 4-OH-benzoyl-CoA reductase (dehydroxylating).(2) o-Cresol was metabolized in the Paracoccus-like strain via 3-CH3-benzoyl-CoA as central intermediate as follows: o-cresol 4-OH-3-CH3-benzoate 4-OH-3-CH3-benzoyl-CoA 3-CH3-benzoyl-CoA. The following enzymes were demonstrated: (a) An enzyme catalyzing an isototope exchange reaction between 14CO2 and the carboxyl of 4-OH-3-CH3-benzoate; this activity is thought to be a partial reaction catalyzed by an o-cresol carboxylase. (b) 4-OH-3-CH3-benzoyl-CoA synthetase (AMP-forming) activating the carboxylation product 4-OH-3-CH3-benzoate to its coenzyme A thioester. (c) 4-OH-3-CH3-benzoyl-CoA reductase (dehydroxylating) catalyzing the reductive dehydroxylation of the 4-hydroxyl group with reduced benzyl viologen as electron donor to yield 3-CH3-benzoyl-CoA. This thioester may also be formed by action of a coenzyme A ligase when 3-CH3-benzoate is metabolized. 2,4-Dimethylphenol was metabolized via 4-OH-3-CH3-benzoate and further to 3-CH3-benzoyl-CoA.(3) The initial reactions of anaerobic metabolism of m-cresol in the Pseudomonas-like strain were not resolved. No indication for the oxidation of the methyl group nor for the carboxylation of m-cresol was found. In contrast, 2,4-and 3,4-dimethylphenol were oxidized to 4-OH-3-CH3-and 4-OH-2-CH3-benzoate, respectively, probably initiated by p-cresol methylhydroxylase; however, these compounds were not metabolized further.The hydroxyl and methyl groups are abbreviated as OH-and CH3-, respectively  相似文献   

17.
Bacteria that can utilize glyphosate (GP) or methylphosphonic acid (MPA) as a sole phosphorus source have been isolated from soil samples polluted with organophosphonates (OP). No matter which of these compounds was predominant in the native habitat of the strains, all of them utilized methylphosphonate. Some of the strains isolated from GP-polluted soil could utilize both phosphorus sources. Strains growing on glyphosate only were not isolated. The isolates retained high destructive activity after long-term storage of cells in lyophilized state, freezing to ?20°C, and maintenance on various media under mineral oil. When phosphorusstarved cells (with 2% phosphorus) were used as inoculum, the efficiency of OP biodegradation significantly increased (1.5-fold).  相似文献   

18.
Summary Lignin degrading bacteria were isolated directly by an enrichment culture technique using an industrial kraft lignin (Indulin AT) as the sole carbon source. The lignin degrading ability of these isolates was assayed in pure cultures. One strain (Aeromonas sp.) had degraded 98% of the lignin (1 g/l) after 5 days of incubation. Different genera have been identified including Corynebacterium, Agrobacterium, Pseudomonas, Aeromonas, but also Klebsiella and Enterobacter. These strains were also able to assimilate different phenolic compounds considered as lignin related simple monomers.  相似文献   

19.
20.
mRNA degradation in bacteria   总被引:26,自引:0,他引:26  
Messenger RNAs in prokaryotes exhibit short half-lives when compared with eukaryotic mRNAs. Considerable progress has been made during recent years in our understanding of mRNA degradation in bacteria. Two major aspects determine the life span of a messenger in the bacterial cell. On the side of the substrate, the structural features of mRNA have a profound influence on the stability of the molecule. On the other hand, there is the degradative machinery. Progress in the biochemical characterization of proteins involved in mRNA degradation has made clear that RNA degradation is a highly organized cellular process in which several protein components, and not only nucleases, are involved. In Escherichia coli, these proteins are organized in a high molecular mass complex, the degradosome. The key enzyme for initial events in mRNA degradation and for the assembly of the degradosome is endoribonuclease E. We discuss the identified components of the degradosome and its mode of action. Since research in mRNA degradation suffers from dominance of E. coli-related observations we also look to other organisms to ask whether they could possibly follow the E. coli standard model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号