首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王磊  刘佳龙  李晓桐  陆昕  冯焱  解军 《微生物学报》2022,62(8):3213-3223
【目的】Sorbicillinoids是里氏木霉合成的一类重要的天然活性物质,具有抗肿瘤、抗氧化及抗病毒等多种生物活性。本研究主要是为了阐明TrSet2在里氏木霉sorbicillinoids合成调控过程中的生物学功能及其作用机制。【方法】基于生物信息分析技术鉴定里氏木霉TrSet2编码基因。采用基因敲除和过表达手段,分别构建Trset2基因敲除和过表达菌株并评估其sorbicillinoids合成能力。同时在Trset2基因敲除菌株中,过表达转录激活因子Ypr1,明确TrSet2和Ypr1之间的调控关系。【结果】Trset2基因敲除菌株完全丧失了合成sorbicillinoids的能力。相反,过表达Trset2导致sorbicillinoids合成的水平显著增加。进一步研究发现,在Trset2基因敲除菌株中过表达转录激活因子Ypr1逆转了其不能合成sorbicillinoids的表型。【结论】本研究明确了TrSet2在里氏木霉合成sorbicillinoids过程中的正向调控作用,其作用机制是通过控制转录因子Ypr1的表达水平实现的。这为基于调控机理控制里氏木霉发酵过程中sorbic...  相似文献   

2.
Fungal secondary metabolites are important bioactive compounds but the conditions leading to expression of most of the putative secondary metabolism (SM) genes predicted by fungal genomics are unknown. Here we describe a novel mechanism involved in SM‐gene regulation based on the finding that, in Aspergillus nidulans, mutants lacking components involved in heterochromatin formation show de‐repression of genes involved in biosynthesis of sterigmatocystin (ST), penicillin and terrequinone A. During the active growth phase, the silent ST gene cluster is marked by histone H3 lysine 9 trimethylation and contains high levels of the heterochromatin protein‐1 (HepA). Upon growth arrest and activation of SM, HepA and trimethylated H3K9 levels decrease concomitantly with increasing levels of acetylated histone H3. SM‐specific chromatin modifications are restricted to genes located inside the ST cluster, and constitutive heterochromatic marks persist at loci immediately outside the cluster. LaeA, a global activator of SM clusters in fungi, counteracts the establishment of heterochromatic marks. Thus, one level of regulation of the A. nidulans ST cluster employs epigenetic control by H3K9 methylation and HepA binding to establish a repressive chromatin structure and LaeA is involved in reversal of this heterochromatic signature inside the cluster, but not in that of flanking genes.  相似文献   

3.
Genes required for fungal secondary metabolite production are usually clustered, co‐regulated and expressed in stationary growth phase. Chromatin modification has an important role in co‐regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP‐qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin‐level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.  相似文献   

4.
5.
Holocarboxylase synthetase (HLCS) is a chromatin protein that facilitates the creation of histone H3 lysine 9-methylation (H3K9me) gene repression marks through physical interactions with the histone methyltransferase EHMT-1. HLCS knockdown causes a depletion of H3K9me marks in mammalian cell cultures and severe phenotypes such as short lifespan and low stress resistance in Drosophila melanogaster. HLCS displays a punctuate distribution pattern in chromatin despite lacking a strong DNA-binding domain. Previous studies suggest that the binding of HLCS to chromatin depends on DNA methylation. We tested the hypothesis that HLCS interacts physically with the DNA methyltransferase DNMT1 and the methyl CpG binding protein MeCP2 to facilitate the binding of HLCS to chromatin, and that these interactions contribute toward the repression of long-terminal repeats (LTRs) by H3K9me marks. Co-immunoprecipitation and limited proteolysis assays provided evidence suggesting that HLCS interacts physically with both DNMT1 and MeCP2. The abundance of H3K9me marks was 207% greater in the LTR15 locus in HLCS overexpression human embryonic kidney HEK293 cells compared with controls. This gain in H3K9me was inversely linked with a 87% decrease in mRNA coding for LTRs. Effects of HLCS abundance on LTR expression were abolished when DNA methylation marks were erased by treating cells with 5-azacytidine. We conclude that interactions between DNA methylation and HLCS are crucial for mediating gene repression by H3K9me, thereby providing evidence for epigenetic synergies between the protein biotin ligase HLCS and dietary methyl donors.  相似文献   

6.
7.
8.
Zheng  Fanglin  Cao  Yanli  Lv  Xinxing  Wang  Lei  Li  Chunyan  Zhang  Weixin  Chen  Guanjun  Liu  Weifeng 《Applied microbiology and biotechnology》2017,101(5):2067-2078

Trichoderma reesei represents an important workhorse for industrial production of cellulases as well as other proteins. The molecular mechanism underlying the regulation of cellulase production as well as other physiological processes in T. reesei is still insufficiently understood. We constructed a P tcu1 -based promoter substitution cassette that allowed one-step replacement of the endogenous promoter for controlling the target gene expression with copper. We then showed that copper repression of the histone acetyltransferase gene gcn5 phenocopied the gcn5 deletion strain. Using the same strategy, we further characterized the function of another putative Spt-Ada-Gcn5 acetyltransferase (SAGA) complex subunit encoding gene, ada2, in T. reesei. Similar to the repression of gcn5, the addition of copper to the P tcu1 -ada2 strain not only drastically reduced the vegetative growth and conidiation in T. reesei but also severely compromised the induced cellulase gene expression. The developed strategy will thus be potentially useful to probe the biological function of the large fraction of T. reesei genes with unknown functions including those essential genes in the genome to expand its extraordinary biotechnological potential.

  相似文献   

9.
10.
Neurogenin1 is an important bHLH protein that plays crucial role in neurogenesis. We first show that the expression of ngn1 increases drastically in RA induced neuronal differentiation. During which, a three successive stages of the epigenetic changes surrounding the ngn1 gene are found correlated with a repression to activation of the gene in P19 cells. Recruiting of a repressive histone code H3K27me3 on the ngn1 gene is the dominant change in first repression stage, which is followed by the binding of the active codes of H3K9ac, H3K14ac, and the H3K4me3 in the second and third stages of RA treatment. Additionally, BRM but not BRG1 is specifically recruited to ngn1 gene at the third stage and is positively involved in the RA induced ngn1 expression. We propose that histone modifiers and chromatin remodelers are pivotal in the activation of the ngn1 gene in RA induced differentiation of P19 cells. J. Cell. Biochem. 107: 264–271, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
《Epigenetics》2013,8(3):416-427
It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of “chromatin-CGH”) and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14–15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.  相似文献   

12.
13.
14.
15.
16.
17.
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.  相似文献   

18.
ABSTRACT. How apicomplexan parasites regulate their gene expression is poorly understood. The complex life cycle of these parasites implies tight control of gene expression to orchestrate the appropriate expression pattern at the right moment. Recently, several studies have demonstrated the role of epigenetic mechanisms for control of coordinated expression of genes. In this review, we discuss the contribution of epigenomics to the understanding of gene regulation in Toxoplasma gondii. Studying the distribution of modified histones on the genome links chromatin modifications to gene expression or gene repression. In particular, coincident trimethylated lysine 4 on histone H3 (H3K4me3), acetylated lysine 9 on histone H3 (H3K9ac), and acetylated histone H4 (H4ac) mark promoters of actively transcribed genes. However, the presence of these modified histones at some non‐expressed genes and other histone modifications at only a subset of active promoters implies the presence of other layers of regulation of chromatin structure in T. gondii. Epigenomics analysis provides a powerful tool to characterize the activation state of genomic loci of T. gondii and possibly of other Apicomplexa including Plasmodium or Cryptosporidium. Further, integration of epigenetic data with expression data and other genome‐wide datasets facilitates refinement of genome annotation based upon experimental data.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号