首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we examine the demographic consequences of mixed mating and explore the interactive effects of vegetative herbivory and mating system for population dynamics of Impatiens capensis, a species with an obligate mixed mating system (i.e., individuals produce both obligately selfing cleistogamous and facultatively outcrossing chasmogamous flowers). In two natural populations, we followed seeds derived from cleistogamous and chasmogamous flowers subject to different herbivory levels throughout their life cycle. Using a mating system-explicit projection matrix model, we found that mating system types differed in important vital rates. Cleistogamous individuals had higher rates of germination than did chasmogamous individuals, whereas chasmogamous individuals expressed a fecundity advantage over cleistogamous individuals. In addition, population growth was most sensitive to changes in vital rates of cleistogamous individuals, indicating the demographic importance of selfing for these populations. Herbivory also had demographic consequences; a 33%-49% reduction in herbivory caused the population growth rates to increase by 104%-132%, primarily because of effects on vital rates of selfed individuals. Our results not only uncover a novel consequence of mating system expression, that is, mating system influences population dynamics, but also shed light on the role of herbivores in maintaining mixed mating.  相似文献   

2.
Theory predicts that inbreeding depression (ID) should decline via purging in self‐fertilizing populations. Yet, intraspecific comparisons between selfing and outcrossing populations are few and provide only mixed support for this key evolutionary process. We estimated ID for large‐flowered (LF), predominantly outcrossing vs. small‐flowered (SF), predominantly selfing populations of the dune endemic Camissoniopsis cheiranthifolia by comparing selfed and crossed progeny in glasshouse environments differing in soil moisture, and by comparing allozyme‐based estimates of the proportion of seeds selfed and inbreeding coefficient of mature plants. Based on lifetime measures of dry mass and flower production, ID was stronger in nine LF populations [mean δ = 1?(fitness of selfed seed/fitness of outcrossed seed) = 0.39] than 16 SF populations (mean δ = 0.03). However, predispersal ID during seed maturation was not stronger for LF populations, and ID was not more pronounced under simulated drought, a pervasive stress in sand dune habitat. Genetic estimates of δ were also higher for four LF (δ = 1.23) than five SF (δ = 0.66) populations; however, broad confidence intervals around these estimates overlapped. These results are consistent with purging, but selective interference among loci may be required to maintain strong ID in partially selfing LF populations, and trade‐offs between selfed and outcrossed fitness are likely required to maintain outcrossing in SF populations.  相似文献   

3.
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them.  相似文献   

4.
Selfing or mating between related individuals in self-compatible hermaphroditic tree species may lead to inbreeding depression (ID) due to homozygosis in recessive, identical by descent alleles. In general, studies of ID in tree species have been based on comparisons of selfed individuals (produced by controlled pollination) with outcrossed individuals for quantitative traits in progeny tests. However, this approach requires a long time to quantify the extent of ID. Thus, we used an approach based on genetic markers to estimate coancestry coefficients between assigned parents from paternity analysis in two populations of the Neotropical tree Cariniana legalis. Using this method, we were able to determine which seedlings in a nursery trial originated from; (i) outcrossing between un-related trees, (ii) mating between related trees and (iii) selfing. We detected a low selfing rate (<10 %), but a substantial quantity of seedlings from mating between related parents (minimum of 35.7 %). In general, the outcrossed seedlings from unrelated parents exhibited significantly greater genetic diversity than those resulting from selfing and mating among relatives. The extent of ID varied among traits and populations. Outcrossed seedlings originating from unrelated trees generally showed greater survival than seedlings originating from selfing and related parents. Inbreeding depression was greater in the selfed seedlings than in those from mating among related parents. The results are discussed in terms of implications for genetic conservation, breeding and environmental restoration using the species.  相似文献   

5.
The population structure of the fungal pathogen Pyrenophora teres, collected mainly from different regions of the Czech and Slovak Republics, was examined using a microsatellite analyses (SSR). Among 305 P. teres f. teres (PTT) and 82 P. teres f. maculata (PTM) isolates that were collected, the overall gene diversity was similar (? = 0.12 and ? = 0.13, respectively). A high level of genetic differentiation (FST = 0.46; P < 0.001) indicated the existence of population structure. Nine clusters that were found using a Bayesian approach represent the genetic structure of the studied P. teres populations. Two clusters consisted of PTM populations; PTT populations formed another seven clusters. An exact test of population differentiation confirmed the results that were generated by Structure. There was no difference between naturally infected populations over time, and genetic distance did not correlate with geographical distance. The facts that all individuals had unique multilocus genotypes and that the hypothesis of random mating could not be rejected in several populations or subpopulations serve as evidence that a mixed mating system plays a role in the P. teres life cycle. Despite the fact that the genetic differentiation value between PTT and PTM (FST = 0.30; P < 0.001) is lower than it is between the populations within each form (FST = 0.40 (PTT); FST = 0.35 (PTM); P < 0.001) and that individuals with mixed PTT and PTM genomes were found, the two forms of P. teres form genetically separate populations. Therefore, it can be assumed that these populations have most likely undergone speciation.  相似文献   

6.
Controlling postharvest pest species is a costly process with insecticide resistance and species‐specific control requiring multiple tactics. Mating disruption (MD) can be used to both decrease a female's access to males and delay timing of mating and decreases overall mating success in a population and population growth rate. Development of new commercially available MD products requires an understanding of life history parameters associated with mating delay. These can provide information for targeting proportions of reproducing individuals using MD. After delaying mating for females of two closely related beetle species, Trogoderma variabile and T. inclusum, we surveyed survivorship, number of eggs laid, and number of progeny emerged. With increases in mating age, total number of eggs laid and total number of progeny emerged significantly declined over time. T. inclusum typically had greater numbers of eggs laid and progeny emerged compared to T. variabile as female age at mating increased, suggesting that T. inclusum may be more resistant to long‐term delays in mating. Life span showed an increase as mating age increased but life span significantly decreased almost immediately following mating. Simulations depicting multiple distributions of mating within a population suggest that in a closed population, high levels of mating delay significantly reduced reproductive growth rates. Although reproductive growth rates were decreased with increased mating age, they are still large enough to maintain populations. This study highlights the differences in life history between two closely related species, suggesting that T. inclusum outperforms T. variabile over the course of a life span, but T. variabile has better reproductive capabilities early in life. MD may also be a viable component of a pest management system for these two species as it significantly decreased overall reproductive output and population growth.  相似文献   

7.
Individual variation in the magnitude of inbreeding depression (ID) in plants and its association with phenotypic traits may have important consequences for mating system evolution. This association has been investigated only scarcely, and always considering traits functionally related to autogamy. Here, we explore the association between individual variation in ID and plant traits associated with pollinator attractiveness (related to plant size, corolla size and corolla shape) in two populations of Erysimum mediohispanicum (Brassicaceae). ID was calculated along the entire life cycle of the plants. In addition, we also explored the relationship between phenotypic traits and the individual levels of heterozygosity. We found significant associations between ID and corolla diameter and stalk height, being taller plants with larger corollas those undergoing a lower intensity of ID. Furthermore, we found a negative relationship between corolla diameter and heterozygosity, suggesting that plants with large flowers have purged their genetic load. Finally, we found a significant effect of corolla diameter on the intrapopulation genetic structure. All these findings suggest that plants with large flowers have secularly suffered frequent inbreeding in the study populations. Because corolla diameter is a trait frequently selected by pollinators in E. mediohispanicum, we believe that the observed relationship between this trait and ID could be mediated by pollinators, probably throughout an increasing in biparental inbreeding, geitonogamy or autogamy.  相似文献   

8.
M Ferriol  C Pichot  F Lefèvre 《Heredity》2011,106(1):146-157
We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88–100%) and seedling mortality was low (0–12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load.  相似文献   

9.
Hermaphroditism allows considerable scope for contributing genes to subsequent generations through various mixtures of selfed and outcrossed offspring. The fitness consequences of different family compositions determine the evolutionarily stable mating strategy and depend on the interplay of genetic features, the nature of mating, and factors that govern offspring development. This theoretical article considers the relative contributions of these influences and their interacting effects on mating-system evolution, given a fixed genetic load within a population. Strong inbreeding depression after offspring gain independence selects for exclusive outcrossing, regardless of the intensity of predispersal inbreeding depression, unless insufficient mating limits offspring production. The extent to which selfing evolves under weak postdispersal inbreeding depression depends on predispersal inbreeding depression and the opportunity for resource limitation of offspring production. Mixed selfing and outcrossing is an evolutionarily stable strategy (ESS) if selfed zygotes survive poorly, but selfed offspring survive well, and maternal individuals produce enough "extra" eggs that deaths of unviable outcrossed embryos do not impact offspring production (reproductive compensation). Mixed mating can also be an ESS, despite weak lifetime inbreeding depression, if self-mating reduces the number of male gametes available for outcrossing (male-gamete discounting). Reproductive compensation and male-gamete discounting act largely independently on mating-system evolution. ESS mating systems always involve either complete fertilization or fertilization of enough eggs to induce resource competition among embryos, so although reproductive assurance is adaptive with insufficient mating, it is never an ESS. Our results illustrate the theoretical importance of different constraints on offspring production (availability of male gametes, egg production, and maternal resources) for both the course and outcome of mating-system evolution, whereas unequal competition between selfed and outcrossed embryos has limited effect. These results also underscore the significance of heterogeneity in the nature and intensity of inbreeding depression during the life cycle for the evolution of hermaphrodite mating systems.  相似文献   

10.
Meta‐studies on hermaphrodites have found a negative relationship between primary selfing rates and levels of inbreeding depression (ID) and, thus, generally support purging in inbred systems. However, in plants, high among‐taxa variance in ID results in no difference in the mean ID between outcrossing and mixed‐mating taxa. Selective interference likely explains high ID among mixed‐mating taxa, whereas low levels of ID among mixed‐mating taxa are not as stressed. Among animal hermaphrodites, primarily molluscs, there are little data on mixed‐mating systems. To fill a taxonomic and mating system gap, we tested for ID in a mixed‐mating tapeworm, Oochoristica javaensis. We provide a direct estimate of ID across infection of an intermediate host by comparing selfing rates at two life history stages. We found little to no evidence for ID, and the level of ID falls in line with what is reported for highly selfing species even though O. javaensis has mixed mating. We discuss this result within the context of kin mating in O. javaensis. Our results emphasize that primary selfing rates alone may be insufficient to classify the inbreeding history in all species when testing for a relationship to ID. Mixed‐mating taxa, and possibly some outcrossing taxa, may exhibit low levels of ID if biparental inbreeding is also driving purging. We advocate that ID studies report estimates of inbreeding history (e.g. FIS or identity disequilibrium) from nature‐derived adult samples to provide context rather than relying on primary selfing rates alone.  相似文献   

11.
Knowledge about mixed mating systems can improve our understanding of the evolutionary dynamics of reproductive systems. Here we report a study of the floral and reproductive biology of Hypericum elodes, an Atlantic-European soft-water pools specialist which shows a floral architecture consistent with both self- and cross-pollination. Controlled pollination experiments were performed in a natural population during three consecutive years. Marked flowers were monitored until fruit production, and laboratory germination experiments were conducted with the seeds produced. Plants were self-compatible (SCI>0.75), however, compared with selfing, cross-pollination enhanced fruit-set, seed-set and seedling growth, but not seed germination. Inbreeding depression (δ) was mild in the pre-dispersal stages (δ = 0.22 for fruit set, 0.18 for seed set and 0.13 for seed mass), low for germination percentage (δ = 0.003) and mild for seedling growth (δ = 0.23). The breeding system of H. elodes promotes outcrossing and assures reproductive success by means of competitive autogamy. Our results suggest a mixed mating strategy for the studied population, characterized by mild inbreeding depression (cumulative δ = 0.57), highlighting the benefit of this reproductive mode in unpredictable habitat, as the typical shallow-water meadows where H. elodes grows.  相似文献   

12.
Characterizing the mating systems of long‐lived, economically important Pacific rockfishes comprising the viviparous Sebastes species flock is crucial for their conservation. However, direct assignment of mating success to sires is precluded by open, offshore populations and high female fecundity. We addressed this challenge by integrating paternity‐assigned mating success of females with the adult sex ratio (ASR) of the population, male evolutionary responses to receptive females, and reproductive life history traits—in the framework of sexual selection theory—to assess the mating system of Sebastes melanops. Microsatellite parentage analysis of 17 pregnant females, 1,256 of their progeny, and 106 adults from the population yielded one to four sires per brood, a mean of two sires, and a female mate frequency distribution with a truncated normal (random) pattern. The 11 multiple paternity broods all contained higher median allele richness than the six single paternity broods (Wilcoxon test: W = 0, p < .001), despite similar levels of average heterozygosity. By sampling sperm and alleles from different males, polyandrous females gain opportunities to enhance their sperm supply and to lower the cost of mating with genetically incompatible males through reproductive compensation. A mean of two mates per mated female with a variance of one, an ASR = 1.2 females per male, and the expected population mean of 2.4 mates for mated males (and the estimated 35 unavailable sires), fits polygamous male mate frequency distributions that distinguish polygynandry and polyandrogyny mating systems, that is, variations of polygamy, but not polyandry. Inference for polygamy is consistent with weak premating sexual selection on males, expected in mid‐water, schooling S. melanops, owing to polyandrous mating, moderately aggregated receptive females, an even ASR, and no territories and nests used for reproduction. Each of these characteristics facilitates more mating males and erodes conspicuous sexual dimorphism. Evaluation of male evolutionary responses of demersal congeners that express reproductively territorial behavior revealed they have more potential mechanisms for producing premating sexual selection, greater variation in reproductive success, and a reduced breeding effective population size of adults and annual effective size of a cohort, compared to S. melanops modeled with two mates per adult. Such divergence in behavior and mating system by territorial species may differentially lower their per capita birth rates, subsequent population growth, and slow their recovery from exploitation.  相似文献   

13.
Chinese cherry (Prunus pseudocerasus Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valuable recommendations for resource conservation, phylogeographic patterns of 26 natural populations (305 total individuals) from six geographic regions were analyzed using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide diversity were found in these populations, especially in landrace populations. It is likely that a combined effect of botanical characteristics impact the effective population size, such as inbreeding mating system, long life span, as well as vegetative reproduction. In addition, strong bottleneck effect caused by domestication, together with founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of efficient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic patterns of populations from these regions and taxonomic varieties were also discussed.  相似文献   

14.
The genetic structure of the fungal barley pathogen Ramularia collo‐cygni (Rcc) population in Central Europe involving the isolates from the Czech Republic, the Slovak Republic, Germany and Swiss was determined using amplified fragment length polymorphism (AFLP) analysis. One hundred and eighty‐four markers were chosen to determine genetic and genotypic diversity and to test the hypothesis of random mating and population differentiation of Rcc isolates. Among the 337 isolates collected, the overall gene diversity was moderate ( = 0.216). The level of multilocus genotypic diversity was higher within populations than among them. All individuals had unique multilocus genotypes. Genetic differentiation was significant among populations in localities, but at a moderate level (θ = 0.12; P < 0.001), suggesting that gene flow is occurring among populations. The isolates from all twelve clusters produced by Structure were found in all local populations, although at different frequencies. Therefore, the inferred clusters did not represent geographical populations. Although the null hypothesis of random mating in Rcc populations was rejected, the high level of genotypic diversity suggests that the Rcc population structure appears to be generated by a mixed reproductive system including both asexual and sexual reproduction, along with a rather high migration rate.  相似文献   

15.
BACKGROUND AND AIMS: Inbreeding depression is thought to play a central role in the evolution and maintenance of cross-fertilization. Theory indicates that inbreeding depression can be purged with self-fertilization, resulting in positive feedback for the selection of selfing. Variation among populations of Leptosiphon jepsonii in the timing and rate of self-fertilization provides an opportunity to study the evolution of inbreeding depression and mating systems. In addition, the hypothesis that differences in inbreeding depression for male and female fitness can stabilize mixed mating in L. jepsonii is tested. METHODS: In a growth room experiment, inbreeding depression was measured in three populations with mean outcrossing rates ranging from 0.06 to 0.69. The performance of selfed and outcrossed progeny is compared at five life history stages. To distinguish between self-incompatibility and early inbreeding depression, aborted seeds and unfertilized ovules were counted in selfed and outcrossed fruits. In one population, pollen and ovule production was quantified to estimate inbreeding depression for male and female fitness. KEY RESULTS: Both prezygotic barriers and inbreeding depression limited self seed set in the most outcrossing population. Cumulative inbreeding depression ranged from 0.297 to 0.501, with the lowest value found in the most selfing population. Significant inbreeding depression for early life stages was found only in the more outcrossing populations. Inbreeding depression was not significant for pollen or ovule production. CONCLUSIONS: The results provide modest support for the hypothesized relationship between inbreeding depression and mating systems. The absence of early inbreeding depression in the more selfing populations is consistent with theory on purging. Differences in male and female expression of inbreeding depression do not appear to stabilize mixed mating in L. jepsonii. The current estimates of inbreeding depression for L. jepsonii differ from those of previous studies, underscoring the effects of environmental variation on its expression.  相似文献   

16.
Reproductive interference can shape regional distribution patterns in closely related species, if prezygotic isolation barriers are weak. The study of such interaction could be more challenging in nuptial gift‐giving species due to the direct nutritional effects on both sexes of both species during copulation. We mapped the distribution of two sister bush‐cricket species, Pholidoptera aptera and Pholidoptera transsylvanica, at the northern margin of their overlapping ranges in Europe, and with a behavioral experiment, we tested the possibility of heterospecific mating. We found a very rare coexistence of species locally (0.5%, n = 391 sites) with mostly mutually exclusive distribution patterns, resulting in a mosaic pattern of sympatry, whereas they occupied the same climate niche in forest‐dominated mountain landscape. Over 14 days of a mating experiment with seven mixed groups of conspecifics and heterospecifics (n = 56 individuals in total), the number of received spermatophores per female was 3–6 in P. aptera and 1–7 in P. transsylvanica. In total, we found 8.1% of heterospecific copulations (n = 99 transferred spermatophores with genetic identification of the donor species), while we also confirmed successful transfer of heterospecific sperms into a female's reproductive system. Because bush‐cricket females also obtain required nutrition from a heterospecific spermatophylax what should increase their fitness and fecundity, we suggest that their flexibility to mate with heterospecifics is beneficial and drives reproductive interference. This may substantially limit the reproductive success of the less frequent species (P. transsylvanica), coupled with eventual detrimental effects from hybridization, and result in the competitive exclusion of that species from their areas of coexistence.  相似文献   

17.
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.  相似文献   

18.
Basic models of mating‐system evolution predict that hermaphroditic organisms should mostly either cross‐fertilize, or self‐fertilize, due to self‐reinforcing coevolution of inbreeding depression and outcrossing rates. However transitions between mating systems occur. A plausible scenario for such transitions assumes that a decrease in pollinator or mate availability temporarily constrains outcrossing populations to self‐fertilize as a reproductive assurance strategy. This should trigger a purge of inbreeding depression, which in turn encourages individuals to self‐fertilize more often and finally to reduce male allocation. We tested the predictions of this scenario using the freshwater snail Physa acuta, a self‐compatible hermaphrodite that preferentially outcrosses and exhibits high inbreeding depression in natural populations. From an outbred population, we built two types of experimental evolution lines, controls (outcrossing every generation) and constrained lines (in which mates were often unavailable, forcing individuals to self‐fertilize). After ca. 20 generations, individuals from constrained lines initiated self‐fertilization earlier in life and had purged most of their inbreeding depression compared to controls. However, their male allocation remained unchanged. Our study suggests that the mating system can rapidly evolve as a response to reduced mating opportunities, supporting the reproductive assurance scenario of transitions from outcrossing to selfing.  相似文献   

19.
We estimated the outcrossing rate in a population of 14 individuals of Dolichandra cynanchoides (Bignoniaceae), a species with late-acting self-incompatibility (LSI), at a site in Chaco woodland in Santa Fe province, Argentina. A subsample of five arbitrarily chosen loci from a total of 16 allozyme loci gave mating system parameters of tm=0.881 (SD 0.039) and ts=0.749 (SD 0.048), thus indicating that although predominantly outcrossing, D. cynanchoides has a mixed mating system. We draw attention to the fact that mixed mating in species with LSI is a very likely scenario, given that previous studies with diverse LSI taxa have shown that mixed cross-self pollen loads on the stigma, which is probably a common occurrence with natural pollinators, result in fruits with a proportion of selfed seeds.  相似文献   

20.
Androdioecy was first described by Darwin in his seminal work on barnacle diversity; he identified males and hermaphrodites in the same reproductive population. Today, we realize that many androdioecious plants and animals share astonishing similarities, particularly with regard to their evolutionary history and mating system. Notably, these species were ancestrally dioecious, and their mating system has the following characteristics: hermaphrodites self‐fertilize frequently, males are more successful in large mating groups, and males have a mating advantage. A male mating advantage makes androdioecy more likely to persist over evolutionary times. Androdioecious barnacles, however, appear to persist as an outlier with a different evolutionary trajectory: they originate from hermaphroditic species. Although sexual systems of androdioecious barnacles are known, no information on the mating system of androdioecious barnacles is available. This study assessed the mating system of the androdioecious barnacle Chelonibia testudinaria. In contrast to other androdioecious species, C. testudinaria does not self‐fertilize, males do not have a mating advantage over hermaphrodites, and the average mating group is quite small, averaging only three individuals. Mating success is increased by proximity to the mate and penis length. Taken together, the mating system of C. testudinaria is unusual in comparison with other androdioecious plants and animals, and the lack of a male mating advantage suggests that the mating system alone does not provide an explanation for the maintenance of androdioecy in this species. Instead, we propose that sex‐specific life history equalizes male and hermaphroditic overall fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号