首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
3.

Background

Cupriavidus necator JMP134 is a Gram-negative β-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source.

Methodology/Principal Findings

Its genome consists of four replicons (two chromosomes and two plasmids) containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000). Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation) seems to be shaped mostly by the acquisition of “specialized” plasmids.

Conclusions/Significance

The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.  相似文献   

4.
5.
Gene expression patterns in response to hydrostatic pressure were determined by whole genome microarray hybridization. Functional classification of the 274 genes affected by pressure treatment of 200 MPa for 30 min revealed a stress response expression profile. The majority of the >2-fold upregulated genes were involved in stress defense and carbohydrate metabolism while most of the repressed ones were in cell cycle progression and protein synthesis categories. Furthermore, uncharacterized genes were among the 10 highest expressed sequences and represented 45% of the total upregulated genes. The results of this study revealed a hydrostatic pressure-specific stress response pattern and suggested interesting information about the mechanisms involved in adaptation of cells to a high-pressure environment.  相似文献   

6.
7.
8.
9.
10.
Carbon catabolite repression (CCR) is a common phenomenon in bacteria that modulates expression of genes involved in uptake of alternative carbon sources. In the filamentous streptomycetes, which produce half of all known antibiotics, the precise mechanism of CCR is yet unknown. We report here that the ROK-family regulator Rok7B7 pleiotropically controls xylose and glucose uptake, CCR, development, as well as production of the macrolide antibiotics avermectin and oligomycin A in Streptomyces avermitilis. Rok7B7 directly repressed structural genes for avermectin biosynthesis, whereas it activated olmRI, the cluster-situated activator gene for oligomycin A biosynthesis. Rok7B7 also directly repressed the xylose uptake operon xylFGH, whose expression was induced by xylose and repressed by glucose. Both xylose and glucose served as Rok7B7 ligands. rok7B7 deletion led to enhancement and reduction of avermectin and oligomycin A production, respectively, relieved CCR of xylFGH, and increased co-uptake efficiency of xylose and glucose. A consensus Rok7B7-binding site, 5′-TTKAMKHSTTSAV-3′, was identified within aveA1p, olmRIp, and xylFp, which allowed prediction of the Rok7B7 regulon and confirmation of 11 additional targets involved in development, secondary metabolism, glucose uptake, and primary metabolic processes. Our findings will facilitate methods for strain improvement, antibiotic overproduction, and co-uptake of xylose and glucose in Streptomyces species.  相似文献   

11.
Insecticide resistance is a major obstacle to the management of disease‐vectoring mosquitoes worldwide. The genetic changes and detoxification genes involved in insecticide resistance have been extensively studied in populations of insecticide‐resistant mosquitoes, however few studies have focused on the resistance genes upregulated upon insecticide exposure and the possible regulation pathways involved in insecticide resistance. To characterize the changes in gene expression during insecticide exposure, and to investigate the possible connection of known regulation pathways with insecticide resistance, we conducted RNA‐Seq analysis of a highly permethrin‐resistant strain of Culex quinquefasciatus following permethrin exposure. Gene expression profiles revealed a total of 224 upregulated and 146 downregulated genes when compared to a blank acetone carrier treated control, respectively, suggesting that there were multiple, but specific genes involved in permethrin resistance. Functional enrichment analysis showed that the upregulated genes contained multiple detoxification genes including a glutathione S‐transferase and multiple cytochrome P450 genes, as well as several immune‐related genes, while the downregulated genes consisted primarily of proteases and carbohydrate metabolism and transport. Further analysis showed that permethrin exposure resulted in a decrease in the expression of serum storage proteins and likely represented a delay in the development of the fourth instar possibly due to a decrease in feeding. This effect was more pronounced in an insecticide‐resistant strain than in an insecticide‐susceptible strain and may represent a behavioral mechanism of insecticide resistance in Culex mosquitoes.  相似文献   

12.
The tcpRXABCYD operon of Cupriavidus necator JMP134 is involved in the degradation of 2,4,6-trichlorophenol (TCP). All of the gene products except TcpY have assigned functions in TCP metabolism. Sequence comparison identified TcpY as a member of COG4313, a group of hypothetical proteins. TcpY has a signal peptide, indicating it is a membrane or secreted protein. Secondary structure and topology analysis indicated TcpY as a β-barrel outer membrane protein, similar to the Escherichia coli outer membrane protein FadL that transports hydrophobic long-chain fatty acids. Constitutive expression of tcpY in two C. necator strains rendered the cells more sensitive to TCP and other polychlorophenols. Further, C. necator JMP134 expressing cloned tcpY transported more TCP into the cell than a control with the cloning vector. Thus, TcpY is an outer membrane protein that facilitates the passing of polychlorophenols across the outer membrane of C. necator. Similarly, other COG4313 proteins are possibly outer membrane transporters of hydrophobic aromatic compounds.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
A comparative analysis of differentially expressed proteins in a susceptible grapevine (Vitis vinifera ‘Cabernet Sauvignon’) during the infection of Erysiphe necator, the causal pathogen of grapevine powdery mildew (PM), was conducted using iTRAQ. The quantitative labeling analysis revealed 63 proteins that significantly changed in abundance at 24, 36, 48, and 72 h post inoculation with powdery mildew conidiospores. The functional classification of the PM‐responsive proteins showed that they are involved in photosynthesis, metabolism, disease/defense, protein destination, and protein synthesis. A number of the proteins induced in grapevine in response to E. necator are associated with the plant defense response, suggesting that PM‐susceptible Cabernet Sauvignon is able to initiate a basal defense but unable to restrict fungal growth or slow down disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号