首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acinetobacter baumannii and Pseudomonas aeruginosa are pathogens capable of colonizing the same infection sites and employing N-acyl homoserine lactone (AHL) based quorum-sensing systems to co-ordinate biofilm formation. Hence, the effect of P. aeruginosa AHLs on biofilm formation by A. baumannii and vice versa were investigated using the biofilm impaired quorum sensing mutants, A. baumannii M2 (abaI::Km) and P. aeruginosa PAO-JP2. Complementing the mutants with heterologous, extracted and pure AHLs increased biofilm mass significantly. The surface area coverage and biovolume also increased significantly as observed by confocal scanning laser microscopy which corroborated scanning electron microscope analysis. Autoinducer synthase gene promoters of A. baumannii, P abaI-lacZ, and P. aeruginosa, P lasI-lacZ, were induced (p < 0.05) by heterologous AHLs. Growth of A. baumannii was not inhibited by pyocyanin of P. aeruginosa which may allow their co-existence and interaction in the clinical setting, thereby affecting the severity of combined infections and therapeutic measures to control them.  相似文献   

2.
Extracellular DNA (eDNA) is a major constituent of the extracellular matrix of Pseudomonas aeruginosa biofilms and its release is regulated via pseudomonas quinolone signal (PQS) dependent quorum sensing (QS). By screening a P. aeruginosa transposon library to identify factors required for DNA release, mutants with insertions in the twin-arginine translocation (Tat) pathway were identified as exhibiting reduced eDNA release, and defective biofilm architecture with enhanced susceptibility to tobramycin. P. aeruginosa tat mutants showed substantial reductions in pyocyanin, rhamnolipid and membrane vesicle (MV) production consistent with perturbation of PQS-dependent QS as demonstrated by changes in pqsA expression and 2-alkyl-4-quinolone (AQ) production. Provision of exogenous PQS to the tat mutants did not return pqsA, rhlA or phzA1 expression or pyocyanin production to wild type levels. However, transformation of the tat mutants with the AQ-independent pqs effector pqsE restored phzA1 expression and pyocyanin production. Since mutation or inhibition of Tat prevented PQS-driven auto-induction, we sought to identify the Tat substrate(s) responsible. A pqsA::lux fusion was introduced into each of 34 validated P. aeruginosa Tat substrate deletion mutants. Analysis of each mutant for reduced bioluminescence revealed that the primary signalling defect was associated with the Rieske iron-sulfur subunit of the cytochrome bc1 complex. In common with the parent strain, a Rieske mutant exhibited defective PQS signalling, AQ production, rhlA expression and eDNA release that could be restored by genetic complementation. This defect was also phenocopied by deletion of cytB or cytC1. Thus, either lack of the Rieske sub-unit or mutation of cytochrome bc1 genes results in the perturbation of PQS-dependent autoinduction resulting in eDNA deficient biofilms, reduced antibiotic tolerance and compromised virulence factor production.  相似文献   

3.
Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP.  相似文献   

4.
Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium and is one of the most commercially and biotechnologically valuable microorganisms. Strains of P. aeruginosa secrete a variety of redox-active phenazine compounds, the most well studied being pyocyanin. Pyocyanin is responsible for the blue-green colour characteristic of Pseudomonas spp. It is considered both as a virulence factor and a quorum sensing signalling molecule for P. aeruginosa. Pyocyanin is an electrochemically active metabolite, involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognised as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. This review summarises recent advances of pyocyanin production from P. aeruginosa with special attention to antagonistic property and bio-control activity. The review also covers the challenges and new insights into pyocyanin from P. aeruginosa.  相似文献   

5.
Pseudomonas aeruginosa can establish life-long chronic infection in patients with cystic fibrosis by generating genetic loss-of-function mutations, which enhance fitness of the bacterium in the airways. However, the precise role of the pathoadaptive mutations in persistence in chronic airways infection remains largely unknown. Here we demonstrate that pyocyanin, a well-described P. aeruginosa virulence factor that plays an important role in the initial infection, promotes autophagy in bronchial epithelial cells. Disruption of phzM, which is required for pyocyanin biosynthesis, leads to a significant reduction in autophagy in Beas-2B cells and lung tissues. Pyocyanin-induced autophagy is mediated by the EIF2AK4/GCN2-EIF2S1/eIF2α-ATF4 pathway. Interestingly, rats infected with the phzMΔ mutant strain have high mortality rate and numbers of colony-forming units, compared to those infected with wild-type (WT) P. aeruginosa PA14 strain, during chronic P. aeruginosa infection. In addition, the phzMΔ mutant strain induces more extensive alveolar wall thickening than the WT strain in the pulmonary airways of rats. As autophagy plays an essential role in suppressing bacterial burden, our findings provide a detailed understanding of why reduction of pyocyanin production in P. aeruginosa in chronic airways infections has been associated with better host adaptation and worse outcomes in cystic fibrosis.  相似文献   

6.
Multidrug efflux pumps are among the main Pseudomonas aeruginosa antibiotic-resistance determinants. Besides, efflux pumps are also involved in other relevant activities of bacterial physiology, including the quorum sensing-mediated regulation of bacterial virulence. Nevertheless, despite the relevance of efflux pumps in bacterial physiology, their interconnection with bacterial metabolism remains obscure. The effect of several metabolites on the expression of P. aeruginosa efflux pumps, and on the virulence and antibiotic resistance of this bacterium, was studied. Phenylethylamine was found to be both inducer and substrate of MexCD-OprJ, an efflux pump involved in P. aeruginosa antibiotic resistance and in extrusion of precursors of quorum-sensing signals. Phenylethylamine did not increase antibiotic resistance; however, the production of the toxin pyocyanin, the tissue-damaging protease LasB and swarming motility were reduced in the presence of this metabolite. This decrease in virulence potential was mediated by a reduction of lasI and pqsABCDE expression, which encode the proteins that synthesise the signalling molecules of two quorum-sensing regulatory pathways. This work sheds light on the interconnection between virulence and antibiotic-resistance determinants, mediated by bacterial metabolism, and points to phenylethylamine as an anti-virulence metabolite to be considered in the study of therapies against P. aeruginosa infections.  相似文献   

7.
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis‐like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin‐elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca2+ activity as well as Ca2+‐dependent proteolytic processing of μ‐calpain. Pyocyanin further up‐regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin‐induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl‐ester labelling, pyocyanin‐treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis‐inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.  相似文献   

8.
Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions.  相似文献   

9.

The increasing occurrence of resistance among Pseudomonas aeruginosa clinical isolates necessitates finding alternatives to antibiotics for controlling the infection of such pathogenic bacteria. In this study, lactonase gene ahl-1 from Bacillus weihenstephanensis isolate-P65 was successfully cloned and expressed in Escherichia coli BL21 (DE3) under the control of T7 promoter for utilizing its quorum quenching activity against three multidrug-resistant (MDR) P. aeruginosa clinical isolates. The biological activity of the overexpressed lactonase enzyme (Ahl-1), tested using a synthetic signal and Chromobacterium violaceum CV026 as a biosensor, displayed good catalytic activity using hexanoyl homoserine lactone (HHL) as a substrate and Chromobacterium violaceum (CV026) as a biosensor (77.2 and 133 nm min−1 for the crude and the purified Ahl-lactonase enzymes, respectively). Upon challenging its ability to inhibit the virulence of three MDR P. aeruginosa clinical isolates, recombinant Ahl-1 successfully prevented the accumulation of acylhomoserine lactone signals resulting in a significant reduction in the investigated virulence determinants; protease (from 40 up to 75.5%), pyocyanin (48–75.9%), and rhamnolipids (52.7–63.4%) (P value < 0.05). Ahl-1 also displayed significant inhibitory activities on the swarming motility and biofilm formation of the three tested MDR P. aeruginosa clinical isolates (P value < 0.05). Consequently, Ahl-1 lactonase enzyme in this study is considered a promising therapeutic agent to inhibit P. aeruginosa pathogenicity with no fear of emergence of resistance.

  相似文献   

10.
MDR Pseudomonas aeruginosa strains are isolated from clinical specimens with increasing frequency. It seems that acquiring genes which determine antibiotic resistance usually comes at a biological cost of impaired bacterial physiology. There is no information on investigations comparing phenotypic differences in MDR and MDS P. aeruginosa strains in literature. The study included 150 clinical P. aeruginosa isolates (75 classified as MDS and 75 as MDR). PFGE analysis revealed five pairs of identical isolates in the group of MDR strains and the results obtained for these strains were not included in the statistical analyses. MDR strains adhered to polystyrene to a lesser extent than MDS strains. The growth rate in the liquid medium was significantly lower for MDR strains. Detectable amounts of alginate were present in the culture supernatants of seven MDS and six MDR strains. The MDR P. aeruginosa strains which were investigated produced significantly lower amounts of extracellular material binding Congo Red, lower lipolytic, elastase, LasA protease, phospholipase C activity and pyocyanin quantity in culture supernatants when compared with MDS strains. No significant differences were observed between MDR and MDS strains in proteolytic activity. In conclusion, the MDR P. aeruginosa strains have impaired virulence when compared to MDS strains.  相似文献   

11.

Long-term space flight impairs the immune system of astronauts, rendering them vulnerable to opportunistic infections. Pseudomonas aeruginosa causes opportunistic infections, particularly in individuals with a compromised immune system; it can be a major health hazard for astronauts during space flight missions. Hence, the production of the most abundant redox active virulence factor, pyocyanin by P. aeruginosa, was assessed under low-shear modeled microgravity (LSMMG) conditions, simulated using a high aspect ratio vessel. Moreover, we evaluated changes in the expression of genes involved in pyocyanin biosynthesis and genes involved in the MexGHI-OpmD operon quorum sensing. Extracellular DNA and H2O2 production were measured, and their correlation with pyocyanin production was examined. Interestingly, the pyocyanin quantity was 2.58-fold lower in the LSMMG conditions compared to the normal gravity. LSMMG caused downregulation of the genes associated with pyocyanin biosynthesis. Interestingly, extracellular DNA and H2O2 release were significantly high in the normal gravity environment. Scanning electron microscopy revealed aggregation and elongated cells under LSMMG. Taken together, these findings suggest that LSMMG did not induce pyocyanin secretion in P. aeruginosa.

  相似文献   

12.
Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.  相似文献   

13.
Summary Tn7 insertions into the genome of F116L, a Pseudomonas aeruginosa generalized transducing phage, were isolated by repeated cycles of transducing phage, were of strains lysogenic for F116cts mutants with selection for trimethoprim resistance (Tp1). Two non-defective F116Lcts:Tn7 phage were characterized. They have reduced plaquing ability, produced non-lysogenic Tpr transductants, and have yielded a deletion mutant of the phage genome upon selection for plaque formation in single infection. F116L DNA is circularly permuted and terminally redundant. A circular restriction map of 61.7 kb has been defined, and a cleavage site common to many enzymes has been identified at coordinate 23.3 kb on the map. It is presumed that this site represents the sequence for the initiation of DNA encapsidation by a headful packaging mode. The Tn7 insertion targets and a 13.4 kb deletion define regions of the F116L genome non-essential for either vegetative growth or lysogenization. The restriction map of Tn7 has been determined for five enzymes. Non-lysogenic Tpr transuctants reveal a Tn7 insertion hot-spot in the P. aeruginosa genome.  相似文献   

14.
Aims: To investigate the bactericidal activity of lactoferrin‐derived peptides and a new LF‐derived peptides chimera (LFchimera) against P. aeruginosa and the influence on virulence factors of P. aeruginosa. Methods and Results: Lactoferricin (LFcin) and lactoferrampin (LFampin) are highly bioactive peptides isolated from the N‐terminal region of lactoferrin (LF) by pepsin digestion. In this study, we designed LFchimera containing LFcin amino acids 17‐30 and LFampin amino acids 268‐284. Pseudomonas aeruginosa cells were incubated in medium with peptides at different concentrations, and then the assays of viability, pyocyanin, elastase activity and biofilm formation of P. aeruginosa were performed. We found that the concentration‐dependent antibactericidal activity and down‐regulating pyocyanin, elastase and biofilm formation of LFchimera were significantly stronger than those of LF, LFcin, LFampin or LFcin plus LFampin. Conclusions: Our results indicated that LF, LFcin, LFampin and LFchimera were potential candidates to combat P. aeruginosa, and LFchimera was the most effective in them. Significance and Impact of the Study: The new LFchimera has better activity against P. aeruginosa than LF, LFcin and LFampin and may be a promising new compound for treatment of P. aeruginosa infection.  相似文献   

15.
Bacterial adhesion and biofilm formation are both dependent on the production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids, and extracellular DNA (eDNA). eDNA promotes biofilm establishment in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is major component of biofilms and is essential for biofilm formation and stability. In this study we report that production of pyocyanin in P. aeruginosa PAO1 and PA14 batch cultures is responsible for promotion of eDNA release. A phzSH mutant of P. aeruginosa PAO1 that overproduces pyocyanin displayed enhanced hydrogen peroxide (H2O2) generation, cell lysis, and eDNA release in comparison to its wildtype strain. A ΔphzA-G mutant of P. aeruginosa PA14 deficient in pyocyanin production generated negligible amounts of H2O2 and released less eDNA in comparison to its wildtype counterpart. Exogenous addition of pyocyanin or incubation with H2O2 was also shown to promote eDNA release in low pyocyanin producing (PAO1) and pyocynain deficient (PA14) strains. Based on these data and recent findings in the biofilm literature, we propose that the impact of pyocyanin on biofilm formation in P. aeruginosa occurs via eDNA release through H2O2 mediated cell lysis.  相似文献   

16.
17.
We have investigatedPseudomonas aeruginosa binding to plasma and cellular fibronectin (FN), in both their soluble and insoluble forms. Bacterial binding to insoluble FN was studied by exposing coverslips coated with FN to radiolabeled microorganisms.P. aeruginosa binding to soluble FN was investigated (1) by comparing radiolabeled bacteria treated with FN with PBS-treated bacteria in their adhesion to a collagen matrix; (2) by analyzing the reactivity ofP. aeruginosa with plasma or cellular FN adsorbed to gold particles with transmission electron microscopy (TEM).P. aeruginosa did not bind significantly to insoluble plasma or cellular FN, or to soluble plasma FN. In contrast, bacterial treatment with soluble cellular FN significantly increased the adhesion to the collagen matrix. With TEM, we confirmed the reactivity ofP. aeruginosa with soluble cellular FN. Because there is a marked secretion of cellular FN during wound repair, we speculate that this reactivity may account for the propensity ofP. aeruginosa to infect repairing tissues.  相似文献   

18.
Pseudomonas aeruginosa biofilms are problematic and play a critical role in the persistence of chronic infections because of their ability to tolerate antimicrobial agents. In this study, various cell-wall degrading enzymes were investigated for their ability to inhibit biofilm formation of two P. aeruginosa strains, PAO1 and PA14. Xylanase markedly inhibited and detached P. aeruginosa biofilms without affecting planktonic growth. Xylanase treatment broke down extracellular polymeric substances and decreased the viscosity of P. aeruginosa strains. However, xylanase treatment did not change the production of pyochelin, pyocyanin, pyoverdine, the Pseudomonas quinolone signal, or rhamnolipid. In addition, the anti-biofilm activity of xylanase was thermally stable for > 100 days at 45°C. Also, xylanase showed anti-biofilm activity against one methicillin-resistance Staphylococcus aureus and two Escherichia coli strains.  相似文献   

19.
20.
A toluene-resistant variant of Pseudomonas putida KT2442, strain TOL, was isolated after liquid cultivation under xylene followed by toluene for 1 month in each condition. Almost all the populations of the variant strain formed small but readily visible colonies under toluene within 24 h at 30°C. The toluene-resistant strain also showed an increase in resistance to some unrelated antibiotics. Several toluene-sensitive Tn5 mutants have been isolated from the toluene-resistant strain and showed various levels of sensitivity. Most of these mutations did not cause significant changes in antibiotic resistance; however, one of the mutants (TOL-4) was highly susceptible to both organic solvents and various antibiotics, especially β-lactams. Sequencing analysis revealed that the mutation in TOL-4 had been introduced into a gene that may encode a transporter protein of an efflux system. This efflux system is very similar to one of the multidrug efflux systems of Pseudomonas aeruginosa. These observations indicate that a multidrug efflux system plays a major role in the organic solvent resistance of P. putida TOL. However, several other genes may also be involved. Received: December 18, 1997 / Accepted: March 16, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号