首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protozoan community in eleven activated sludge wastewater treatment plants (WWTPs) in the greater Dublin area has been investigated and correlated with key physio-chemical operational and effluent quality parameters. The plants represented various designs, including conventional and biological nutrient removal (BNR) systems. The aim of the study was to identify differences in ciliate community due to key design parameters including anoxic/anaerobic stages and to identify suitable bioindicator species for performance evaluation. BNR systems supported significantly different protozoan communities compared to conventional systems. Total protozoan abundance was reduced in plants with incorporated anoxic and anaerobic stages, whereas species diversity was either unaffected or increased. Plagiocampa rouxi and Holophrya discolor were tolerant to anoxic/anaerobic conditions and associated with high denitrification. Apart from process design, influent wastewater characteristics affect protozoan community structure. Aspidisca cicada was associated with low dissolved oxygen and low nitrate concentrations, while Trochilia minuta was indicative of good nitrifying conditions and good sludge settleability. Trithigmostoma cucullulus was sensitive to ammonia and phosphate and could be useful as an indicator of high effluent quality. The association rating assessment procedure of Curds and Cockburn failed to predict final effluent biological oxygen demand (BOD5) indicating the method might not be applicable to treatment systems of different designs.  相似文献   

2.
This study aimed to determine the relationship between activated sludge microfauna, the sludge biotic index (SBI) and the effluent quality of a full-scale municipal wastewater treatment plant (WWTP) working with shock organic and ammonium loadings caused by periodic wastewater delivery from septic tanks. Irrespective of high/low effluent quality in terms of COD, BOD5, ammonium and suspended solids, high SBI values (8–10), which correspond to the first quality class of sludge, were observed. High SBI values were connected with abundant taxonomic composition and the domination of crawling ciliates with shelled amoebae and attached ciliates. High SBI values, even at a low effluent quality, limit the usefulness of the index for monitoring the status of an activated sludge system and the effluent quality in municipal WWTP-treated wastewater from septic tanks. It was shown that a more sensitive indicator of effluent quality was a change in the abundance of attached ciliates with a narrow peristome (Vorticella infusionum and Opercularia coarctata), small flagellates and crawling ciliates (Acineria uncinata) feeding on flagellates.  相似文献   

3.
Soluble microbial products (SMPs) are considered as the main organic components in wastewater treatment plant effluent from biological wastewater treatment systems. To investigate and explore SMP metabolism pathway for further treatment and control, two innovative mechanistically based activated sludge models were developed by extension of activated sludge model no.3 (ASM3). One was the model by combining SMP formation and degradation (ASM3-SMP model) processes with ASM3, and the other by combining both SMP and simultaneous substrate storage and growth (SSSG) mechanisms with ASM3 (SSSG-ASM3-SMP model). The detailed schematic modification and process supplements were introduced for comprehensively understanding all the mechanisms involved in the activated sludge process. The evaluations of these two models were demonstrated by a laboratory-scale sequencing batch reactor (SBR) operated under aerated/non-aerated conditions. The simulated and measured results indicated that SMP comprised about 83% of total soluble chemical oxygen demand (SCOD) in which biomass-associated products (BAPs) were predominant compared with utilization-associated products (UAPs). It also elucidated that there should be a minimum SMP value as the reactive time increases continuously and this conclusion could be used to optimize effluent SCOD in activated sludge processes. The comparative results among ASM3, ASM3-SMP and SSSG-ASM3-SMP models and the experimental measurements (SCOD, ammonia and nitrate nitrogen) showed clearly the best agreement with SSSG-ASM3-SMP simulation values (R = 0.993), strongly suggesting that both SMP formation and degradation and SSSG mechanisms are necessary in biologically activated sludge modeling for municipal wastewater treatment.  相似文献   

4.
The toxicity of high salinity tannery wastewater produced after an activated sludge secondary treatment on the germination and seedling growth of Trifolium pratense, a species used as indicator in toxicity tests, was evaluated. Growth was inhibited by wastewater concentrations >25% and undiluted effluent caused a complete germination inhibition. Constructed wetlands (CWs) with Arundo donax or Sarcocornia fruticosa were envisaged to further polish this wastewater. Selection of plant species to use in CWs for industrial wastewater treatment is an important issue, since for a successful establishment they have to tolerate the often harsh wastewater composition. For that, the effects of this wastewater on the growth of Arundo and Sarcocornia were assessed in pot assays. Plants were subject to different wastewater contents (0/50/100%), and both were resilient to the imposed conditions. Arundo had higher growth rates and biomass than Sarcocornia and may therefore be the preferred species for use in CWs treating tannery wastewater. CWs planted with the above mentioned plants significantly decreased the toxicity of the wastewater, as effluent from the CWs outlet stimulated the growth of Trifolium at concentrations <50%, and seed germination and growth even occurred in undiluted effluent.  相似文献   

5.
Ceramic industry wastewaters not only contain high suspended and total solids but also significant amounts of dissolved organics resulting in high BOD or COD loads. Suspended solids can be removed from the wastewater by chemical precipitation. However, dissolved BOD/COD compounds can only be removed by biological or chemical oxidation. Effluent wastewater from chemical sedimentation stage of EGE CERAMIC industry was characterized and subjected to biological treatment in a laboratory scale activated sludge unit. Experiments were conducted at different hydraulic and solids retention times. The best results were obtained with Šc=20 h of hydraulic and Šc=20 days of solids retention times (sludge age) resulting in effluent COD concentration of 40 mg/l from a feed wastewater of 720 mg/l COD content. The suspended solids content of the activated sludge effluent was approximately 52 mg/l.  相似文献   

6.
ABSTRACT: BACKGROUND: The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. RESULTS: The Archaea community was specialized and dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6-% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. CONCLUSIONS: The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge.  相似文献   

7.
Presence of anaerobic bacteroides in aerobically grown microbial granules   总被引:6,自引:0,他引:6  
Microbial granules were grown in a column-type sequential aerobic sludge blanket reactor inoculated with activated sludge flocs taken from a wastewater treatment plant and containing a medium with glucose as the main carbon source. The reactor selected for granules that could settle rapidly by employing a short settling time of 2 min. Matured granules with diameters between 2 and 3 mm were examined for anaerobic bacteria as their presence can signal the onset of diffusion limitation problems that can potentially diminish granule stability due to the bacterial production of fermentation gases and organic acids under anaerobic conditions. To detect the anaerobes in the granules, clones were constructed from 16S rRNA PCR amplicons. Two sequence types associated with a strict anaerobe Bacteroides spp. were identified from these clones. Fluorescence in situ hybridization (FISH) followed by confocal laser scanning microscopy (CLSM) demonstrated that cells of Bacteroides spp. were concentrated at a depth of approximately 800 mm below the surface of the granule. Cell enumeration using flow cytometry showed that the percentage of labeled cells of Bacteroides spp. compared to total bacterial cells in the granules was 0.56%. This is the first study to use a suite of culture-independent techniques to report the presence of a defined species of anaerobic bacteria in aerobically grown microbial granules.  相似文献   

8.
Chen Y  Gu G 《Bioresource technology》2005,96(15):1713-1721
The long-term continuous chromium(VI) removal from synthetic wastewater affected by influent hexavalent chromium (Cr(VI)) and glucose concentrations were studied with an anaerobic-aerobic activated sludge process. It was observed that before activated sludge was acclimated, the chromium in the effluent increased immediately as the influent chromium increased. However, both Cr(VI) and total chromium (TCr) in the effluent significantly decreased after acclimation. In the acclimated activated sludge, the chromium removal efficiency was 100% Cr(VI) and 98.56% TCr at influent Cr(VI) levels of 20 mg/day, 100% Cr(VI) and 98.92% TCr at influent Cr(VI) levels of 40 mg/day, and 98.64% Cr(VI) and 97.16% TCr at influent Cr(VI) levels of 60 mg/day. The corresponding effluent Cr(VI) and TCr concentrations were 0 and 0.012 mg/l, 0 and 0.018 mg/l, and 0.034 mg/l and 0.071 mg/l, respectively. When the influent glucose increased from 1125 to 1500 mg/l at influent Cr(VI) dosage of 60 mg/day, the Cr(VI) and TCr removal efficiency with the acclimated activated sludge improved from 98.64% and 97.16% to 100% and 98.48%, respectively, and the chromium concentration in the effluent decreased from 0.034 mg/l of Cr(VI) and 0.071 mg/l of TCr to 0 (Cr(VI)) and 0.038 mg/l (TCr). The effluent COD and turbidity was around 40 mg/l and 0, respectively, after the activated sludge was acclimated. Further studies showed that after the activated sludge was acclimated, its specific dehydrogenases activity (SDA) and protein contents increased. The SDA and protein increased respectively 15% and 10% when influent Cr(VI) increased from 20 to 60 mg/day.  相似文献   

9.
Aggregation of bacterial cells is used in formation of microbial granules. Aerobically grown microbial granules can be used as the bio-agents in the treatment of wastewater. However, there are problems with start up of microbial granulation and biosafety of this process. Aim of this research was selection and testing of safe microbial strain with high cell aggregation ability to shorten period of microbial granules formation. Five bacterial strains with cell aggregation index higher than 50% have been isolated from the granules. Strain of Pseudomonas veronii species was considered as most probably safe starter culture for granulation because other strains belonged to the species known as human pathogens. The microbial granules were formed after 3 days of cultivation in case when P. veronii strain B was applied to start-up aerobic granulation process using model wastewater. The granules were produced from activated sludge after 9 days of cultivation. Microbial aggregates produced from starter culture of P. veronii strain B were more compact (sludge volume index was 70 ml/g) than those produced from activated sludge (sludge volume index was 106 ml/g). It is a first proof that application of selected safe starter pure culture with high cell aggregation ability can accelerate and enhance formation of microbial granules.  相似文献   

10.
Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.  相似文献   

11.
[背景]养猪废水作为高浓度有机废水,是导致我国农业面源污染的主要因素之一.目前采用菌藻共生系统处理养猪废水越来越受到关注,与传统序批式反应器(Sequencing Batch Reactor,SBR)相比,藻辅助SBR具有提高脱氮除磷效果、增加污泥活性和降低能源消耗的特点.[目的]针对SBR中菌藻共生系统对养猪废水脱氮...  相似文献   

12.
Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only in the design of the BNR system itself, but also in the design approach for the whole wastewater treatment plant (WWTP). In multizone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic, and aerobic zones (i.e., fixed volume fractions), the mass fractions can be controlled (within a range) with the interreactor recycle ratios. This zone mass fraction flexibility is a significant advantage in membrane BNR systems over conventional BNR systems with SSTs, because it allows for changing of the mass fractions to optimize biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios in the upper range (f(q) approximately 2.0), aerobic mass fractions in the lower range (f(maer) < 0.60), and high (usually raw) wastewater strengths, the indicated mode of operation of MBR BNR systems is as extended aeration WWTPs. Although the volume reduction compared with equivalent conventional BNR systems with secondary settling tanks is not as large (40% to 60%), the cost of the membranes can be offset against sludge thickening and stabilization costs. Moving from a flow-unbalanced raw wastewater system to a flow-balanced (f(q) = 1), low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes from extended aeration to include primary sludge stabilization. The cost of primary sludge treatment then has to be paid from the savings from the increased WWTP capacity.  相似文献   

13.
Biological treatment of saline wastewater by conventional activated sludge culture usually results in low removal of chemical oxygen demand (COD) because of plasmolysis of the organisms at high salt concentrations. Since salt removal operations by physicochemical processes before biological treatment are costly, a salt-tolerant organism (Halobacter halobium) was used for effective biological treatment of saline wastewater in this study. Halobacter halobium was used in activated sludge culture for COD removal from saline wastewater (1–5% salt) by fed-batch operation of an aeration tank. Inclusion of Halobacter halobium into activated sludge culture improved the rate and extent of COD removals especially with salt above 2% (w/v).  相似文献   

14.
Summary Wastewater from fiber board manufacture consisting in a mixture of Pinus radiata, Eucaliptus globulus and Laureliopsis phillipiana (tepa) (3:1:1) has been studied in laboratory scale activated sludge reactors with organic load rate range of 50–1700 gCOD/m3.d. A stable operation at high organic load rate with hydraulic retention time of one day was achieved. Purification efficiencies up to 90 % of COD removal could be achieved in an activated sludge treatment of fiber board wastewater working with 1 day HRT for wood log cooking wastewater and with 4 days HRT when glueing wastewater is added to the cooking wastewater treatment. Suspended solids, color and phenol concentration were negligible in the efluent of the activated sludge system.  相似文献   

15.
The process performance and metabolic rates of samples of activated sludge dosed with vitamin supplements have been compared. After initial screening, four vitamins and two metals as single supplements and in pairs, were dosed continuously into the mixed liquor of an activated sludge simulation. Toxicity, oxygen demand removal, respiration rates and suspended solids were measured to monitor the effect on process efficiency. It was confirmed experimentally that an industrial wastewater stream did not contain a sufficient supply of micronutrients for efficient biological treatment. This was concluded from the observation that control sludge batches (receiving no supplements) averaged chemical oxygen demand removal efficiency of 58%. Dosing micronutrients into the mixed liquor produced removal efficiencies of up to 69%. Some of the supplements increased the respiration rate of the sludge while some decreased it, indicating a range of stimulatory and inhibitory effects. Complex interactions between micronutrients that were dosed simultaneously were evident. Several positive effects led to the conclusion that micronutrients have the potential to optimise process performance of activated sludge plants treating industrial wastewater. The addition of phosphorus/niacin and molybdenum/lactoflavin removed wastewater components that were toxic to nitrifiers as indicated through toxicity testing, thus protecting downstream nitrification/denitrification treatment processes. Journal of Industrial Microbiology & Biotechnology (2000) 24, 267–274. Received 24 August 1999/ Accepted in revised form 06 January 2000  相似文献   

16.
Poor sludge settling was observed occasionally during the treatment of effluent from acrylonitrile and acrylates manufacturing plants using an extended aeration activated sludge process. Sludge settled excellently when suspended in water or a filtrate obtained by passing aeration tank supernatant through granular activated charcoal (GAC) column. A biofactor consisting of 52% lipid, 10% protein, and 11% carbohydrate was isolated from the supernatant obtained after removal of suspended solids from aeration tank wastewater. Addition of biofactor in water or GAC filtrate adversely affected the sludge settling.  相似文献   

17.
Methylotrophic yeast Hansenula polymorphawere shown to cooperate with activated sludgefrom biological wastewater treatment stations,enhancing substantially its potential tobiodegrade formaldehyde in industrial wastewater. After integration with yeast cells the modified sludge retained its original structure and activity whereas its resistance to elevated formaldehyde concentrations was significantly improved. The applicability of the yeast in the utilization of formaldehyde derivatives, as exemplified by urotropine and trioxane, was also investigated. The treatment of urotropine-containing wastewater with methylotrophic yeast was found to be effective at acidic conditions (pH below 5.5). Trioxane was not degraded due to the stability of an ether bond which made the molecule recalcitrant to oxidation via methylotrophic pathway reactions. It is concluded that the yeast species may be applied to treat wastewater containing formaldehyde and some of its derivatives as either monocultures or as an integrated, specialized element of the activated sludge biocenosis.  相似文献   

18.
Huang M  Li Y  Gu G 《Bioresource technology》2008,99(17):8107-8111
A laboratory-scale anaerobic-anoxic-aerobic (AAA) activated sludge wastewater treatment system was employed to investigate the effects of hydraulic retention time (HRT) and sludge retention time (SRT) on the removal and fate of di-(2-ethylhexyl) phthalate (DEHP). In the range from 5 to 14h, HRT had no significant effect on DEHP removal. However, longer HRT increased DEHP accumulation in the system and DEHP retention in the waste sludge. When SRT was increased from 15 to 25d, DEHP removal efficiency stayed above 96%. Compared to the removal of only 88% at SRT of 10d, longer SRT enhanced DEHP degradation efficiency. The optimal HRT and SRT for both nutrients (nitrogen and phosphorus) and DEHP removal were 8h and 15d. At these retention times, about 71% of DEHP was degraded by the activated sludge process, 26% was accumulated in the system, 2% was released in the effluent, and 1% remained in the waste sludge. The anaerobic, anoxic and aerobic reactors were responsible for 15%, 19% and 62% of the overall DEHP removal, respectively.  相似文献   

19.
Positively charged Zeta Plus filters were used to concentrate enteroviruses from 19 liters of effluent from activated sludge units. Neither the addition of salts nor the acidification of the effluent was required for adsorption of viruses to the filters. Viruses adsorbed to the filters were eluted by treating the filters with a solution of 4 M urea buffered at pH 9 with 0.05 M lysine. Eluted viruses were concentrated into final volumes of 1 to 2 ml by using a two-step concentration procedure that employed inorganic and organic flocculation. Approximately 50% of the viruses added to effluents could be recovered in the final sample. The procedure was used to monitor effluents from activated sludge units at two wastewater treatment plants for the presence of enteroviruses.  相似文献   

20.
This study examined the hydrolysis of lignocellulose extracted from municipal wastewater treatment process residuals for the purpose of investigating low-cost feedstocks for ethanol production, while providing an alternative solid waste management strategy. Primary and thickened waste activated sludges and anaerobically digested biosolids underwent various pre-treatments to enhance subsequent enzymatic hydrolysis. Half of the pre-treated samples were dried and grinded, while the other half were used as is (wet). The wet primary sludge yielded the highest reducing sugar conversions. When wet primary sludge without pre-treatment was hydrolyzed at 40 °C and an enzyme loading of 800 U/g substrate, 31.1 ± 2.7% was converted to reducing sugars in 24 h. This increased to 54.2 ± 4.0% when HCl and KOH pre-treatments were applied. FTIR analyses were used to examine differences in the sludge compositions. These indicated that the cellulose content in the primary sludge was higher than that of the thickened waste activated sludge and biosolids, which was consistent with the higher reducing sugar yields observed in the primary sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号