首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organohalides are environmentally relevant compounds that can be degraded by aerobic and anaerobic microorganisms. The denitrifying Thauera chlorobenzoica is capable of degrading halobenzoates as sole carbon and energy source under anaerobic conditions. LC‐MS/MS‐based coenzyme A (CoA) thioester analysis revealed that 3‐chloro‐ or 3‐bromobenzoate were preferentially metabolized via non‐halogenated CoA‐ester intermediates of the benzoyl‐CoA degradation pathway. In contrast, 3‐fluorobenzoate, which does not support growth, was converted to dearomatized fluorinated CoA ester dead‐end products. Extracts from cells grown on 3‐chloro‐/3‐bromobenzoate catalysed the Ti(III)‐citrate‐ and ATP‐dependent reductive dehalogenation of 3‐chloro/3‐bromobenzoyl‐CoA to benzoyl‐CoA, whereas 3‐fluorobenzoyl‐CoA was converted to a fluorinated cyclic dienoyl‐CoA compound. The reductive dehalogenation reactions were identified as previously unknown activities of ATP‐dependent class I benzoyl‐CoA reductases (BCR) present in all facultatively anaerobic, aromatic compound degrading bacteria. A two‐step dearomatization/H‐halide elimination mechanism is proposed. A halobenzoate‐specific carboxylic acid CoA ligase was characterized in T. chlorobenzoica; however, no such enzyme is present in Thauera aromatica, which cannot grow on halobenzoates. In conclusion, it appears that the presence of a halobenzoate‐specific carboxylic acid CoA ligase rather than a specific reductive dehalogenase governs whether an aromatic compound degrading anaerobe is capable of metabolizing halobenzoates.  相似文献   

2.
3.
The cyclohexane derivative cis‐2‐(carboxymethyl)cyclohexane‐1‐carboxylic acid [(1R,2R)‐/(1S,2S)‐2‐(carboxymethyl)cyclohexane‐1‐carboxylic acid] has previously been identified as metabolite in the pathway of anaerobic degradation of naphthalene by sulfate‐reducing bacteria. We tested the corresponding CoA esters of isomers and analogues of this compound for conversion in cell free extracts of the anaerobic naphthalene degraders Desulfobacterium strain N47 and Deltaproteobacterium strain NaphS2. Conversion was only observed for the cis‐isomer, verifying that this is a true intermediate and not a dead‐end product. Mass‐spectrometric analyses confirmed that conversion is performed by an acyl‐CoA dehydrogenase and a subsequent hydratase yielding an intermediate with a tertiary hydroxyl‐group. We propose that a novel kind of ring‐opening lyase is involved in the further catabolic pathway proceeding via pimeloyl‐CoA. In contrast to degradation pathways of monocyclic aromatic compounds where ring‐cleavage is achieved via hydratases, this lyase might represent a new ring‐opening strategy for the degradation of polycyclic compounds. Conversion of the potential downstream metabolites pimeloyl‐CoA and glutaryl‐CoA was proved in cell free extracts, yielding 2,3‐dehydropimeloyl‐CoA, 3‐hydroxypimeloyl‐CoA, 3‐oxopimeloyl‐CoA, glutaconyl‐CoA, crotonyl‐CoA, 3‐hydroxybutyryl‐CoA and acetyl‐CoA as observable intermediates. This indicates a link to central metabolism via β‐oxidation, a non‐decarboxylating glutaryl‐CoA dehydrogenase and a subsequent glutaconyl‐CoA decarboxylase.  相似文献   

4.
Ruegeria pomeroyi DSS‐3 possesses two general pathways for metabolism of dimethylsulphoniopropionate (DMSP), an osmolyte of algae and abundant carbon source for marine bacteria. In the DMSP cleavage pathway, acrylate is transformed into acryloyl‐CoA by propionate‐CoA ligase (SPO2934) and other unidentified acyl‐CoA ligases. Acryloyl‐CoA is then reduced to propionyl‐CoA by AcuI or SPO1914. Acryloyl‐CoA is also rapidly hydrated to 3‐hydroxypropionyl‐CoA by acryloyl‐CoA hydratase (SPO0147). A SPO1914 mutant was unable to grow on acrylate as the sole carbon source, supporting its role in this pathway. Similarly, growth on methylmercaptopropionate, the first intermediate of the DMSP demethylation pathway, was severely inhibited by a mutation in the gene encoding crotonyl‐CoA carboxylase/reductase, demonstrating that acetate produced by this pathway was metabolized by the ethylmalonyl‐CoA pathway. Amino acids and nucleosides from cells grown on 13C‐enriched DMSP possessed labelling patterns that were consistent with carbon from DMSP being metabolized by both the ethylmalonyl‐CoA and acrylate pathways as well as a role for pyruvate dehydrogenase. This latter conclusion was supported by the phenotype of a pdh mutant, which grew poorly on electron‐rich substrates. Additionally, label from [13C‐methyl] DMSP only appeared in carbons derived from methyl‐tetrahydrofolate, and there was no evidence for a serine cycle of C‐1 assimilation.  相似文献   

5.
The strain Rhodococcus ruber P25 utilizes 4-chlorobiphenyl (4CB) and 4-chlorobenzoic acid (4CBA) as sole carbon and energy sources. 4CB degradation by washed cells of strain P25 was accompanied by transient formation of 4CBA, followed by its utilization and release of equimolar amounts of chloride ions into the medium. The strain R. ruber P25 possessed active enzyme systems providing 4CBA degradation via the stages of formation of intermediates, para-hydroxybenzoate (PHBA) and protocatechuic acid (PCA), to compounds of the basic metabolism. The involvement of protocatechuate 4,5-dioxygenase in 4CBA degradation by rhodococci was revealed. It was established that the initial stage of 4CBA degradation (dehalogenation) in the strain R. ruber P25 was controlled by the fcbA and fcbB genes encoding 4-CBA-CoA ligase and 4-CBA-CoA dehalogenase, respectively. The genes encoding 4CBA dehalogenase components have not been previously detected and characterized in bacteria of the genus Rhodococcus.  相似文献   

6.
The metabolic pathways of the central carbon metabolism in Saccharomyces cerevisiae are well studied and consequently S. cerevisiae has been widely evaluated as a cell factory for many industrial biological products. In this study, we investigated the effect of engineering the supply of precursor, acetyl‐CoA, and cofactor, NADPH, on the biosynthesis of the bacterial biopolymer polyhydroxybutyrate (PHB), in S. cerevisiae. Supply of acetyl‐CoA was engineered by over‐expression of genes from the ethanol degradation pathway or by heterologous expression of the phophoketolase pathway from Aspergillus nidulans. Both strategies improved the production of PHB. Integration of gapN encoding NADP+‐dependent glyceraldehyde‐3‐phosphate dehydrogenase from Streptococcus mutans into the genome enabled an increased supply of NADPH resulting in a decrease in glycerol production and increased production of PHB. The strategy that resulted in the highest PHB production after 100 h was with a strain harboring the phosphoketolase pathway to supply acetyl‐CoA without the need of increased NADPH production by gapN integration. The results from this study imply that during the exponential growth on glucose, the biosynthesis of PHB in S. cerevisiae is likely to be limited by the supply of NADPH whereas supply of acetyl‐CoA as precursor plays a more important role in the improvement of PHB production during growth on ethanol. Biotechnol. Bioeng. 2013; 110: 2216–2224. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o-phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ-proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short-lived phthaloyl-CoA by an ATP-dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl-CoA by an UbiD-like phthaloyl-CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate-reducing Desulfobacula toluolica, strain NaphS2, and other δ-proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl-CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl-CoA, the possibly most unstable CoA ester in biology.  相似文献   

8.
9.
In the denitrifying member of the beta-Proteobacteria Thauera aromatica, the anaerobic metabolism of aromatic acids such as benzoate or 2-aminobenzoate is initiated by the formation of the coenzyme A (CoA) thioester, benzoyl-CoA and 2-aminobenzoyl-CoA, respectively. Both aromatic substrates were transformed to the acyl-CoA intermediate by a single CoA ligase (AMP forming) that preferentially acted on benzoate. This benzoate-CoA ligase was purified and characterized as a 57-kDa monomeric protein. Based on V(max)/K(m), the specificity constant for 2-aminobenzoate was 15 times lower than that for benzoate; this may be the reason for the slower growth on 2-aminobenzoate. The benzoate-CoA ligase gene was cloned and sequenced and was found not to be part of the gene cluster encoding the general benzoyl-CoA pathway of anaerobic aromatic metabolism. Rather, it was located in a cluster of genes coding for a novel aerobic benzoate oxidation pathway. In line with this finding, the same CoA ligase was induced during aerobic growth with benzoate. A deletion mutant not only was unable to grow anaerobically on benzoate or 2-aminobenzoate, but also aerobic growth on benzoate was affected. This suggests that benzoate induces a single benzoate-CoA ligase. The product of benzoate activation, benzoyl-CoA, then acts as inducer of separate anaerobic or aerobic pathways of benzoyl-CoA, depending on whether oxygen is lacking or present.  相似文献   

10.
11.
In Xanthomonas campestris pv. campestris (Xcc), the proteins encoded by the rpf (regulator of pathogenicity factor) gene cluster produce and sense a fatty acid signal molecule called diffusible signalling factor (DSF, 2(Z)‐11‐methyldodecenoic acid). RpfB was reported to be involved in DSF processing and was predicted to encode an acyl‐CoA ligase. We report that RpfB activates a wide range of fatty acids to their CoA esters in vitro. Moreover, RpfB can functionally replace the paradigm bacterial acyl‐CoA ligase, Escherichia coli FadD, in the E. coli ß‐oxidation pathway and deletion of RpfB from the Xcc genome results in a strain unable to utilize fatty acids as carbon sources. An essential RpfB function in the pathogenicity factor pathway was demonstrated by the properties of a strain deleted for both the rpfB and rpfC genes. The ΔrpfB ΔrpfC strain grew poorly and lysed upon entering stationary phase. Deletion of rpfF, the gene encoding the DSF synthetic enzyme, restored normal growth to this strain. RpfF is a dual function enzyme that synthesizes DSF by dehydration of a 3‐hydroxyacyl‐acyl carrier protein (ACP) fatty acid synthetic intermediate and also cleaves the thioester bond linking DSF to ACP. However, the RpfF thioesterase activity is of broad specificity and upon elimination of its RpfC inhibitor RpfF attains maximal activity and its thioesterase activity proceeds to block membrane lipid synthesis by cleavage of acyl‐ACP intermediates. This resulted in release of the nascent acyl chains to the medium as free fatty acids. This lack of acyl chains for phospholipid synthesis results in cell lysis unless RpfB is present to counteract the RpfF thioesterase activity by catalysing uptake and activation of the free fatty acids to give acyl‐CoAs that can be utilized to restore membrane lipid synthesis. Heterologous expression of a different fatty acid activating enzyme, the Vibrio harveyi acyl‐ACP synthetase, replaced RpfB in counteracting the effects of high level RpfF thioesterase activity indicating that the essential role of RpfB is uptake and activation of free fatty acids.  相似文献   

12.
The baiB gene from Eubacterium sp. strain VPI 12708 was previously cloned, sequenced, and shown to be part of a large bile acid-inducible operon encoding polypeptides believed to be involved in bile acid 7 alpha-dehydroxylation. In the present study, the baiB gene was subcloned and expressed in Escherichia coli and shown to encode a bile acid-coenzyme A (CoA) ligase. This ligase required a C-24 bile acid with a free carboxyl group, ATP, Mg2+, and CoA for synthesis of the final bile acid-CoA conjugate. Product analysis by reverse-phase high-performance liquid chromatography revealed final reaction products that comigrated with cholyl-CoA and AMP. A putative bile acid-AMP intermediate was detected when CoA was omitted from the reaction mixture. The bile acid-CoA ligase has amino acid sequence similarity to several other polypeptides involved in the ATP-dependent linking of AMP or CoA to cyclic carboxylated compounds. The bile acid-CoA ligation is believed to be the initial step in the bile acid 7 alpha-dehydroxylation pathway in Eubacterium sp. strain VPI 12708.  相似文献   

13.
14.
Trimethyl-1,2-dihydroxypropyl-ammonium (TM) originates from the hydrolysis of the parent esterquat surfactant, which is widely used as softener in fabric care. Based on test procedures mimicking complex biological systems, TM is supposed to degrade completely when reaching the environment. However, no organisms able to degrade TM were isolated nor has the degradation pathway been elucidated so far. We isolated a Gram-negative rod able to grow with TM as sole source of carbon, energy and nitrogen. The strain reached a maximum specific growth rate of 0.4 h–1 when growing with TM as the sole source of carbon, energy and nitrogen. TM was degraded to completion and surplus nitrogen was excreted as ammonium into the growth medium. A high percentage of the carbon in TM (68% in continuous culture and 60% in batch culture) was combusted to CO2 resulting in a low yield of 0.54 mg cell dry weight per mg carbon during continuous cultivation and 0.73 mg cell dry weight per mg carbon in batch cultures. Choline, a natural structurally related compound, served as a growth substrate, whereas a couple of similar other quaternary aminoalcohols also used in softeners did not. The isolated bacterium was identified by 16S-rDNA sequencing as a strain of Pseudomonas putida with a difference of only one base pair to P. putida DSM 291T. Despite their high identity, the reference strain P. putida DSM 291T was not able to grow with TM and the two strains differed even in shape when growing on the same medium. This is the first microbial isolate able to degrade a quaternary ammonium softener head group to completion. Previously described strains growing on quaternary ammonium surfactants (decyltrimethylammonium, hexadecyltrimethylammonium and didecyldimethylammonium) either excreted metabolites or a consortium of bacteria was required for complete degradation.  相似文献   

15.
A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA) transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary–secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol production by genetically engineered microorganism under aerobic culture conditions.  相似文献   

16.
The accumulation of oat (Avena sativa L.) phytoalexins, avenanthramides, occurred in leaf segments treated with oligo-N-acetylchitooligosaccharides. The amount of avenanthramide A, the major oat phytoalexin, reached a maximum 36–48 h after elicitor treatment. This accumulation was preceded by a marked increase in enzyme activities of phenylpropanoid pathway members, including phenylalanine ammonia-lyase (EC 4.3.1.5), cinnamate 4-hydroxylase (EC 1.14.13.11) and 4-coumarate:CoA ligase (EC 6.2.1.12). These enzyme activities reached a maximum 6–12 h after elicitor treatment, when the avenanthramides were produced most rapidly. Both phenylalanine ammonia-lyase and 4-coumarate:CoA ligase activities decreased thereafter to undetectable levels 72 h after treatment, while cinnamate 4-hydroxylase activity showed a second increase 48 h after treatment. Among the chitooligosaccharides tested, tetra- and pentasaccharides most effectively induced these enzyme activities in a dose-dependent manner. The elicitor-induced 4-coumarate: CoA ligase accepted all hydroxycinnamic acids occurring in the avenanthramides as substrates, with the exception of avenalumic acid. These findings indicate that accumulation of the avenanthramides results from de-novo synthesis through the general phenylpropanoid pathway and that early biosynthetic enzymes function as regulatory points of carbon flow to the avenanthramides. Received: 3 December 1998 / Accepted: 27 January 1999  相似文献   

17.
Plant cell cultures constitute eco‐friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate‐elicited Taxus baccata cell cultures by complementary DNA‐amplified fragment length polymorphism (cDNA‐AFLP) indicated a correlation between an extensive elicitor‐induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate‐induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl‐CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl‐CoA ligase that localizes to the cytoplasm and is able to convert β‐phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β‐phenylalanyl‐CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.  相似文献   

18.
AIMS: To demonstrate the expression of coumarate : CoA ligase of Arabidopsis thaliana in Lactococcus lactis as a first step of cloning the vanillin pathway. METHODS AND RESULTS: The 4CL gene was amplified from a cDNA library of A. thaliana by PCR and subcloned into a multicopy lactococcal vector where the expression is under the nisA promoter. The maximum yield of the protein in the recombinant strain of L. lactis was obtained 3 h after induction with 10 ng ml(-1) of nisin. However, these levels were only fraction of those detected in cell extracts of Pseudomonas fluorescens AN103 strain which naturally expresses its own enzyme when grown in the presence of ferulic acid as a carbon source. Among different substrates examined, the enzyme was most active against coumaric acid. CONCLUSIONS: The gene encoding coumarate : CoA ligase in A. thaliana was isolated, sequenced, cloned and expressed in L. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents the first of the two steps for genetic engineering of the vanillin pathway in the GRAS (generally recognized as safe) organism L. lactis.  相似文献   

19.
Bile acids are surface-active steroid compounds with toxic effects for bacteria. Recently, the isolation and characterization of a bacterium, Pseudomonas sp. strain Chol1, growing with bile acids as the carbon and energy source was reported. In this study, initial reactions of the aerobic degradation pathway for the bile acid cholate were investigated on the biochemical and genetic level in strain Chol1. These reactions comprised A-ring oxidation, activation with coenzyme A (CoA), and beta-oxidation of the acyl side chain with the C(19)-steroid dihydroxyandrostadienedione as the end product. A-ring oxidizing enzyme activities leading to Delta(1,4)-3-ketocholyl-CoA were detected in cell extracts and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cholate activation with CoA was demonstrated in cell extracts and confirmed with a chemically synthesized standard by LC-MS/MS. A transposon mutant with a block in oxidation of the acyl side chain accumulated a steroid compound in culture supernatants which was identified as 7alpha,12alpha-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) by nuclear magnetic resonance spectroscopy. The interrupted gene was identified as encoding a putative acyl-CoA-dehydrogenase (ACAD). DHOPDC activation with CoA in cell extracts of strain Chol1 was detected by LC-MS/MS. The growth defect of the transposon mutant could be complemented by the wild-type ACAD gene located on the plasmid pBBR1MCS-5. Based on these results, the initiating reactions of the cholate degradation pathway leading from cholate to dihydroxyandrostadienedione could be reconstructed. In addition, the first bacterial gene encoding an enzyme for a specific reaction step in side chain degradation of steroid compounds was identified, and it showed a high degree of similarity to genes in other steroid-degrading bacteria.  相似文献   

20.
Haloferax sp. D1227, isolated from soil contaminated with highly saline oil brine, is the first halophilic archaeon to demonstrate the utilization of aromatic compounds (i.e., benzoic acid, cinnamic acid, and 3-phenylpropionic acid) as sole carbon and energy sources for growth. The degradation of 3-phenylpropionic acid in this strain was studied to examine the strategies utilized by Archaea to metabolize aromatic compounds. Based on our findings of (1) the extracellular accumulation of cinnamic acid, benzoic acid, 3-hydroxybenzoic acid, and gentisic acid in cultures of Haloferax D1227 grown on 3-phenylpropionic acid, (2) the presence of an 3-phenylpropionylCoA dehydrogenase, (3) the ATP, CoA, and NAD-dependent conversion of cinnamic acid to benzoylCoA, and (4) the presence of gentisate 1,2-dioxygenase, we propose that Haloferax D1227 metabolizes 3-phenylpropionic acid by initial 2-carbon shortening of the side chain to benzoylCoA via a mechanism similar to fatty acid β-oxidation, fol-lowed by aromatic degradation using a gentisate pathway. The upper aliphatic pathway from 3-phenylpropionic acid to benzoic acid is regulated separately from the lower gentisate pathway. Received: January 7, 1998 / Accepted: July 22, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号