首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical communication plays an important role in density‐dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3‐butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4‐vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4‐vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4‐vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation.  相似文献   

2.
蝗虫多型现象的神经内分泌调控   总被引:3,自引:1,他引:2  
蝗虫有两种型,即散居型和群居型。蝗灾通常由群居型蝗虫所引发。多年来人们试图找到控制蝗虫由散居型向群居型转变的关键因子,以期控制蝗虫危害。该文主要从神经内分泌的角度概述了蝗虫多型性的生理机制,重点介绍了保幼激素、蜕皮激素和脑神经肽[His7]-corazonin在蝗虫多型性中的主要作用和机制。  相似文献   

3.
The ability of parasites to modify the behaviour of their hosts is a wide spread phenomenon, but the effects of microsporidian parasites on locust behaviour remain unexplored. Here the frequencies of directional changes (ND) and jumping (NJ) per minute of gregarious locusts infected with 2000 spores of the microsporidian parasite Paranosema locustae were significantly different from those of untreated locusts 10 and 16 days after infection, being similar to values for solitary nymphs. In contrast, the behaviour of locusts inoculated with the lower doses of 200 spores/locust was sometimes like that of solitary nymphs. At other times, behaviour was intermediate between solitary and gregarious, i.e. transitional. The rearing density did not affect the turning and jumping behaviour of infected locusts, and their behaviours were similar to those of solitary locusts at 10–16 days after infection. Our study demonstrates that infection with P. locustae may lead gregarious locusts to change some of their behaviour to that typical of solitary locusts.  相似文献   

4.
Physiological and morphological characteristics of antennal lobe neurons of solitary and gregarious fifth-instar nymphs of the desert locust, Schistocerca gregaria, were studied using intracellular recording and staining techniques. Physiological characteristics of antennal lobe neurons of both locust phases responding to stage-dependent aggregation pheromones, egg-laying attractants, a putative sex pheromone and plant-associated volatiles are described. Antennal lobe neurons showed excitatory, inhibitory, combined excitatory and inhibitory and delayed responses. In addition, one neuron␣showing an initial inhibition followed by an excitation and inhibition response was found. Pheromone-specific-, plant-specific- and pheromone-plant-generalist neurons were found in both locust phases. Antennal lobe neurons displayed stage- and phase-dependent differences in the processing of aggregation pheromone component input. Nymphal antennal lobe neurons showed stage-dependent response characteristics highly correlated with the preferential behavioural attraction to the nymphal aggregation pheromone. Phase-dependent differences were found in the response spectra and the sensitivity of the same neuron types. Neurons of solitary locusts responded significantly more frequently to some of the tested components than neurons of gregarious locusts. Furthermore, antennal lobe neurons of solitary locusts showed a higher sensitivity to most of the tested compounds. Accepted: 4 July 1998  相似文献   

5.
Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food‐related behaviors and a specific gene family called foraging (for), which encodes a cGMP‐dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long‐term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well‐established phase‐related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density‐dependent differences in flight‐related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind‐induced flight initiation. Wind‐induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight‐related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase‐dependent differences in the activity of flight‐related interneurons reflect behavioral phase characteristics. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 152–162, 2003  相似文献   

7.
Locust phase polymorphism is an extreme example of behavioral plasticity; in response to changes in population density, locusts dramatically alter their behavior. These changes in behavior facilitate the appearance of various morphological and physiological phase characteristics. One of the principal behavioral changes is the more intense flight behavior and improved flight performance of gregarious locusts compared to solitary ones. Surprisingly, the neurophysiological basis of the behavioral phase characteristics has received little attention. Here we present density-dependent differences in flight-related sensory and central neural elements in the desert locust. Using techniques already established for gregarious locusts, we compared the response of locusts of both phases to controlled wind stimuli. Gregarious locusts demonstrated a lower threshold for wind-induced flight initiation. Wind-induced spiking activity in the locust tritocerebral commissure giants (TCG, a pair of identified interneurons that relay input from head hair receptors to thoracic motor centers) was found to be weaker in solitary locusts compared to gregarious ones. The solitary locusts' TCG also demonstrated much stronger spike frequency adaptation in response to wind stimuli. Although the number of forehead wind sensitive hairs was found to be larger in solitary locusts, the stimuli conveyed to their flight motor centers were weaker. The tritocerebral commissure dwarf (TCD) is an inhibitory flight-related interneuron in the locust that responds to light stimuli. An increase in TCD spontaneous activity in dark conditions was significantly stronger in gregarious locusts than in solitary ones. Thus, phase-dependent differences in the activity of flight-related interneurons reflect behavioral phase characteristics.  相似文献   

8.
9.
Guo W  Wang X  Ma Z  Xue L  Han J  Yu D  Kang L 《PLoS genetics》2011,7(2):e1001291
Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleotide microarray analysis. Data analysis revealed that several gene categories relevant to peripheral olfactory perception are strongly regulated in a total of 1,444 differentially expressed genes during both time courses. Among these candidate genes, several CSP (chemosensory protein) genes and one takeout gene, LmigTO1, showed higher expression in gregarious and solitarious locusts, respectively, and displayed opposite expression trends during solitarization and gregarization. qRT-PCR experiments revealed that most CSP members and LmigTO1 exhibited antenna-rich expressions. RNA interference combined with olfactory behavioral experiments confirmed that the CSP gene family and one takeout gene, LmigTO1, are involved in the shift from repulsion to attraction between individuals during gregarization and in the reverse transition during solitarization. These findings suggest that the response to locust-emitted olfactory cues regulated by CSP and takeout genes is involved in the behavioral phase change in the migratory locust and provide a previously undescribed molecular mechanism linked to the formation of locust aggregations.  相似文献   

10.
11.
Field and laboratory studies demonstrated that Paranosema (Nosema) locustae had significant effects on the morphological phase transformation of Locusta migratoria manilensis (Meyen 1835). In the field, spraying P. locustae on gregarious locusts caused a substantial population reduction by 16 days after treatment, with most of the surviving locusts being phase solitaria. However, the effects of P. locustae on locust phase transformation began before direct mortality had caused a substantial reduction in locust density: locust numbers were still high at day 10, but locusts had already transformed to phase transiens. Laboratory assays showed that while a low dose of P. locustae had no effect on phase transformation, at a higher dose of 1×105 spores/mL, locusts had F/C ratios that were significantly (P<0.05) more solitaria than untreated locusts, with locusts having ratios that were either phase solitaria or on the solitaria side of phase transiens. In a second laboratory experiment that analysed the effects of locust density on phase transformation by P. locustae, there was no obvious effect of density on female locusts 10 days later as all were solitaria at all locust densities. At day 16, female locusts were transiens at higher densities, but were solitaria at 4/cage. With males there were lesser effects. These results provide new evidence for P. locustae having sub-lethal effects on locust phase transformation at a wide range of locust densities.  相似文献   

12.
13.
A hallmark of the desert locust's ancient and deserved reputation as a devastating agricultural pest is that of the long-distance, multi-generational migration of locust swarms to new habitats. The bacterial symbionts that reside within the locust gut comprise a key aspect of its biology, augmenting its immunity and having also been reported to be involved in the swarming phenomenon through the emission of attractant volatiles. However, it is still unclear whether and how these beneficial symbionts are transmitted vertically from parent to offspring. Using comparative 16S rRNA amplicon sequencing and direct experiments with engineered bacteria, we provide evidence for vertical transmission of locust gut bacteria. The females may perform this activity by way of inoculation of the egg-pod's foam plug, through which the larvae pass upon hatching. Furthermore, analysis of the composition of the foam revealed chitin to be its major component, along with immunity-related proteins such as lysozyme, which could be responsible for the inhibition of some bacteria in the foam while allowing other, more beneficial, strains to proliferate. Our findings reveal a potential vector for the transgenerational transmission of symbionts in locusts, which contributes to the locust swarm's ability to invade and survive in new territories.  相似文献   

14.
15.
Hyperlipaemic response to adipokinetic hormone (AKH I) was demonstrated in both solitary and gregarious phases of the desert locust, Schistocerca gregaria gregaria. Time-course studies showed that the gregarious locusts had a faster response to the hormone than their solitary counterparts. At peak response time (90 min), the gregarious locusts were more sensitive to AKH I doses below 2 pmol while the solitary locusts had a higher response above this dose. Upon injection of the hormone, lipoprotein conversion occurred, resulting in the formation of the low density lipoprotein (LDLp). The LDLp formed in the gregarious locusts was much larger than that of the solitary locusts. The fat body lipid reserve (expressed as % fat body dry weight) was significantly (P < 0.01) higher in the gregarious (79.02 ± 2.77%) than in the solitary locusts (65.23 ± 2.55%). Triacylglycerol was the major lipid class representing 83.9 and 73.9% of the total lipids in gregarious and solitary locusts, respectively. The higher fat body lipid reserves and efficient LDLp formation in response to AKH in gregarious locusts compared to solitary locusts suggests a physiological adaptation for prolonged flights. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
Today, the question of the physiological cause of phase transition, the transition from the solitary to the gregarious phase, in locusts remains unanswered. We hereby present a novel approach by which we have attempted to determine whether different phases express or release different peptides in similar physiological conditions. For this purpose, a peptidomic analysis of the corpora cardiaca and hemolymph of crowded and isolated locusts of Schistocerca gregaria was performed using high performance liquid chromatography and matrix-assisted laser desorption ionisation time of flight mass spectrometry. A comparison between the two conditions reveals differences in the number and amount of peptides present in the corpora cardiaca and the hemolymph. Further research will have to identify these phase specific differences and their role in locust phase polymorphism.  相似文献   

18.
During outbreaks, locust swarms can contain millions of insects travelling thousands of kilometers while devastating vegetation and crops. Such large-scale spatial organization is preceded locally by a dramatic density-dependent phenotypic transition in multiple traits. Behaviourally, low-density 'solitarious' individuals avoid contact with one another; above a critical local density, they undergo a rapid behavioural transition to the 'gregarious phase' whereby they exhibit mutual attraction. Although proximate causes of this phase polyphenism have been widely studied, the ultimate driving factors remain unclear. Using an individual-based evolutionary model, we reveal that cannibalism, a striking feature of locust ecology, could lead to the evolution of density-dependent behavioural phase-change in juvenile locusts. We show that this behavioural strategy minimizes risk associated with cannibalistic interactions and may account for the empirically observed persistence of locust groups during outbreaks. Our results provide a parsimonious explanation for the evolution of behavioural plasticity in locusts.  相似文献   

19.
Locusts show an extreme example of density-dependent phase polymorphism, demonstrating within the species differences in morphology as well as biology, dependent on the population density. Behavior is the primary density-dependent change which facilitates the appearance of various morphological and physiological phase characteristics. We have studied density dependent differences in flight related sensory and central neural elements in the desert locust Schistocerca gregaria. Wind generated high frequency spiking activity in the tritocerebral commissure giant (TCG, an identified interneuron that relay inputs from head hair receptors to thoracic motor centers) that was much less intense in solitary locusts, compared to gregarious ones. In addition the solitary locusts' TCG demonstrated much stronger adaptation of its response. In cases when flight was initiated high frequency TCG activity was independent of the locust phase. The tritocerebral commissure dwarf (TCD) is a GABAergic flight related interneuron that is sensitive to ambient illumination intensity. An increase in the TCD spontaneous activity under dark vs. light conditions was significantly higher in gregarious locusts then in solitary ones, implying a flight-related inhibitory mechanism that is far more active in gregarious locusts under dark conditions. Thus, density-dependent phase differences in interneuron activity pattern and properties well reflect and may be at least partially responsible to behavioral flight-related characteristics.  相似文献   

20.
The changes accompanying the transition from the gregarious to the solitary phase state in locusts are so drastic that for a long time these phases were considered as distinct species. It was Boris Uvarov who introduced the concept of polyphenism. Decades of research revealed that phase transition implies changes in morphometry, the color of the cuticle, behavior and several aspects of physiology. In particular, in the recent decade, quite a number of molecular studies have been undertaken to uncover phase-related differences. They resulted in novel insights into the role of corazonin, neuroparsins, some protease inhibitors, phenylacetonitrile and so on. The advent of EST-databases of locusts (e.g. Kang et al., 2004) is a most encouraging novel development in physiological and behavioral locust research. Yet, the answer to the most intriguing question, namely whether or not there is a primordial molecular inducer of phase transition, is probably not within reach in the very near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号