首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the essential functions of sedimentary bacterial and fungal communities in biogeochemical cycling, little is known about their biogeographic patterns and driving processes in large rivers. Here we investigated the biogeographic assemblies and co-occurrence patterns of sedimentary bacterial and fungal communities in the Jinsha River, one of the largest rivers in southwestern China. The mainstream of river was divided into upstream, midstream and downstream. The results showed that both bacterial and fungal communities differed significantly among three sections. For both communities, their composition variations in all sites or each river section were controlled by the combination of dispersal limitation and environmental selection, and dispersal limitation was the dominant factor. Compared with bacteria, fungi had stronger dispersal limitation. Co-occurrence network analyses revealed higher network connectivity but a lower proportion of positive interaction in the bacterial than fungal network at all sites. In particular, the keystone species belonging to bacterial phyla Proteobacteria and Firmicutes and fungal phyla Ascomycota and Chytridiomycota may play critical roles in maintaining community function. Together, these observations indicate that fungi have a stronger dispersal limitation influence and less network connectivity than bacteria, implying different community assembly mechanisms and ecological functions between bacteria and fungi in large rivers.  相似文献   

2.
The assembly of bacterial communities in the rhizosphere is well-documented and plays a crucial role in supporting plant performance. However, we have limited knowledge of how plant rhizosphere determines the assembly of protistan predators and whether the potential associations between protistan predators and bacterial communities shift due to rhizosphere selection. To address this, we examined bacterial and protistan taxa from 443 agricultural soil samples including bulk and rhizosphere soils. Our results presented distinct patterns of bacteria and protistan predators in rhizosphere microbiome assembly. Community assembly of protistan predators was determined by a stochastic process in the rhizosphere and the diversity of protistan predators was reduced in the rhizosphere compared to bulk soils, these may be attributed to the indirect impacts from the altered bacterial communities that showed deterministic process assembly in the rhizosphere. Interestingly, we observed that the plant rhizosphere facilitates more close interrelationships between protistan predators and bacterial communities, which might promote a healthy rhizosphere microbial community for plant growth. Overall, our findings indicate that the potential predator–prey relationships within the microbiome, mediated by plant rhizosphere, might contribute to plant performance in agricultural ecosystems.  相似文献   

3.
The turnover of community composition across space, β-diversity, is influenced by different assembly mechanisms, which place varying weight on local habitat factors, such as environmental conditions and species interactions, and regional factors such as dispersal and history. Several assembly mechanisms may function simultaneously; however, little is known about how their importance changes over time and why. Here, we implemented a field survey where we sampled a bacterial metacommunity consisting of 17 rock pools located at the Swedish Baltic Sea coast at 11 occasions during 1 year. We determined to which extent communities were structured by different assembly mechanisms using variation partitioning and studied changes in β-diversity across environmental gradients over time. β-Diversity was highest at times of high overall productivity and environmental heterogeneity in the metacommunity, at least partly due to species sorting, that is, selection of taxa by the prevailing environmental conditions. In contrast, dispersal-driven assembly mechanisms were primarily detected at times when β-diversity was relatively low. There were no indications for strong and persistent differences in community composition or β-diversity between permanent and temporary pools, indicating that the physical disturbance regime is of relatively minor importance. In summary, our study clearly suggests that there are temporal differences in the relative importance of different assembly mechanisms related to abiotic factors and shows that the temporal variability of those factors is important for a more complete understanding of bacterial metacommunity dynamics.  相似文献   

4.
Stegen JC  Hurlbert AH 《PloS one》2011,6(6):e20906
Understanding the influences of dispersal limitation and environmental filtering on the structure of ecological communities is a major challenge in ecology. Insight may be gained by combining phylogenetic, functional and taxonomic data to characterize spatial turnover in community structure (β-diversity). We develop a framework that allows rigorous inference of the strengths of dispersal limitation and environmental filtering by combining these three types of β-diversity. Our framework provides model-generated expectations for patterns of taxonomic, phylogenetic and functional β-diversity across biologically relevant combinations of dispersal limitation and environmental filtering. After developing the framework we compared the model-generated expectations to the commonly used "intuitive" expectation that the variance explained by the environment or by space will, respectively, increase monotonically with the strength of environmental filtering or dispersal limitation. The model-generated expectations strongly departed from these intuitive expectations: the variance explained by the environment or by space was often a unimodal function of the strength of environmental filtering or dispersal limitation, respectively. Therefore, although it is commonly done in the literature, one cannot assume that the strength of an underlying process is a monotonic function of explained variance. To infer the strength of underlying processes, one must instead compare explained variances to model-generated expectations. Our framework provides these expectations. We show that by combining the three types of β-diversity with model-generated expectations our framework is able to provide rigorous inferences of the relative and absolute strengths of dispersal limitation and environmental filtering. Phylogenetic, functional and taxonomic β-diversity can therefore be used simultaneously to infer processes by comparing their empirical patterns to the expectations generated by frameworks similar to the one developed here.  相似文献   

5.
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity.  相似文献   

6.
Planktonic bacterial and microeukaryotic communities play important roles in biogeochemical cycles, but their biogeographic patterns and community assembly processes in large damming rivers still remain unclear. In this study, 16S rRNA and 18S rRNA coding genes were used for sample sequencing analysis of planktonic bacterial and microeukaryotic communities in the upper Yangtze River. The upper Yangtze River was divided into dam-affected zones and river zones based on the influence of dams. The results showed that there were significant differences in the bacterial and microeukaryotic communities between the two zones and that dams significantly reduced the α-diversity of the bacterial communities. Co-occurrence network analysis indicated that networks in the river zone were denser than those in the dam-affected zone. The relationships among species in bacterial networks were more complex than those in microeukaryotic networks. Dispersal limitation and ecological drift were the main processes influencing planktonic bacterial and microeukaryotic communities in the dam-affected zone respectively, whereas the role of deterministic processes increased in the river zone. Anthropogenic activities and hydraulic conditions affected suspended sediment and controlled microbial diversity in the river zone. These results suggest that dams impact planktonic bacteria more strongly than planktonic microeukaryotes, indicating that the distribution patterns and processes of the bacterial and microeukaryotic communities in large rivers are significantly different.  相似文献   

7.
The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules.  相似文献   

8.
Although pyrogenic organic matter (PyOM) generated during wildfires plays a critical role in post-fire ecosystem recovery, the specific mechanisms by which PyOM controls soil microbial community assembly after wildfire perturbation remain largely uncharacterized. Herein we characterized the effect of PyOM on soil bacterial communities at two independent wildfire-perturbed forest sites. We observed that α-diversity of bacterial communities was the highest in wildfire-perturbed soils and that bacterial communities gradually changed along a sequence of unburnt soil → burnt soil → PyOM. The microbial communities reconstructed from unburnt soil and PyOM resembled the real bacterial communities in wildfire-perturbed soils in their α-diversity and community structure. Bacterial specialists in PyOM and soils clustered in phylogenetic coherent lineages with intra-lineage pH-niche conservatism and inter-lineage pH-niche divergence. Our results suggest that PyOM mediates bacterial community assembly in wildfire-perturbed soils by a combination of environmental selection and dispersal of phylogenetic coherent specialists with habitat preference in the heterogeneous microhabitats of burnt soils with distinct PyOM patches.Subject terms: Forest ecology, Microbial ecology  相似文献   

9.

Aim

Evaluating the similarity of diversity patterns across micro- to macroevolutionary scales in natural communities, such as species–genetic diversity correlations (SGDCs), may inform on processes shaping community assembly. However, whether SGDCs not only hold across communities but also across lineages has never been explored so far. Here we investigated SGDCs across co-distributed taxa for different spatial components (α, β, γ), and formally tested the influence of dispersal traits on β-SGDCs.

Location

Western Indian Ocean.

Time period

2016–2017.

Major taxa studied

Tropical reef fish species with contrasting dispersal traits.

Methods

Using double-digest restriction-site associated DNA sequencing (ddRADseq) Single Nucleotide Polymorphism data for 20 tropical reef fishes and distribution data of 2,446 species belonging to 12 families, we analysed the correlations between within-species genetic diversity and within-family species diversity (i.e., lineage diversity) for the three spatial components (α, β, γ-SGDCs). We then related the strength of β-SGDCs per species to proxies of larval dispersal abilities.

Results

We detected positive and significant lineage-based SGDC only for the β component, that is, the families showing the greatest level of species turnover among sites contain the species with the greatest levels of genetic differentiation. We showed that the Monsoon Drift mainly explained the β-diversity patterns at both intraspecific and interspecific levels. Higher β-SGDCs were found for species with short pelagic larval duration and weak larval swimming capacity.

Main conclusions

Our study reveals a strong correlation between genetic and species β-diversity, a result explained by the presence of a ‘soft’ barrier and mediated by larval dispersal processes. This suggests that vicariance and dispersal limitation are major processes shaping β-diversity patterns from microevolutionary to macroevolutionary scales in tropical reef fishes.  相似文献   

10.
Bacteria and archaea represent the vast majority of biodiversity on Earth. The ways that dynamic ecological and evolutionary processes interact in the microbial world are, however, poorly known. Here, we have explored community patterns of planktonic freshwater bacteria inhabiting stratified lakes with oxic/anoxic interfaces and euxinic (anoxic and sulfurous) water masses. The interface separates a well-oxygenated upper water mass (epilimnion) from a lower anoxic water compartment (hypolimnion). We assessed whether or not the vertical zonation of lakes promoted endemism in deeper layers by analyzing bacterial 16S rRNA gene sequences from the water column of worldwide distributed stratified lakes and applying a community ecology approach. Community similarity based on the phylogenetic relatedness showed that bacterial assemblages from the same water layer were more similar across lakes than to communities from different layer within lakes and that anoxic hypolimnia presented greater β-diversity than oxic epilimnia. Higher β-diversity values are attributable to low dispersal and small connectivity between community patches. In addition, surface waters had significant spatial but non-significant environmental components controlling phylogenetic β-diversity patterns, respectively. Conversely, the bottom layers were significantly correlated with environment but not with geographic distance. Thus, we observed different ecological mechanisms simultaneously acting on the same water body. Overall, bacterial endemicity is probably more common than previously thought, particularly in isolated and environmentally heterogeneous freshwater habitats. We argue for a microbial diversity conservation perspective still lacking in the global and local biodiversity preservation policies.  相似文献   

11.
环境选择和扩散限制驱动温带森林土壤细菌群落的构建   总被引:1,自引:0,他引:1  
环境选择和扩散限制是生态系统中生物群落构建的两个基本过程,而两者相对作用的大小因研究尺度、群落属性和类型等有所不同.目前对温带亚高山森林土壤微生物群落构建的驱动因子和机制尚缺乏了解.本文利用PCR-DGGE技术研究庞泉沟自然保护区内5种典型森林包括华北落叶松林、青杄林、白杄林、油松林以及桦树林的6个森林土壤细菌群落(Lp MC1、Lp MC2、Pw MC、Pm MC、Pt MC、BMC)的结构特征及其影响因素,分析细菌群落结构与环境因子的相关性,以及土壤因子、植被和空间因素对细菌群落结构的影响.结果表明:研究区各样地土壤细菌群落的结构和生物多样性具有显著差异,低海拔落叶松和油松土壤细菌群落多样性较高(20条带),白杄林土壤细菌群落(13条带)多样性最低,高海拔落叶松土壤细菌群落多样性最高;土壤环境因子,如pH、土壤含水量、总碳、总氮、土壤有机质、速效磷以及土壤酶活性与土壤细菌群落多样性和结构显著相关;样地土壤细菌群落的beta多样性与群落的空间距离呈显著相关,表明扩散限制对群落结构具有一定的影响;方差分解分析结果显示,6个样地细菌群落结构的驱动因素大小依次为土壤因子(0.27)、空间因素(0.19)和植被(0.15);将区域土壤微生物作为"源群落",微宇宙试验结果显示,土壤因子是细菌群落结构形成的主要驱动力(0.35),同时源群落丰富的物种多样性对微宇宙土壤细菌群落结构具有显著影响.总之,在局域尺度下,环境选择对温带森林土壤细菌群落结构动态和多样性发挥主导作用,地理距离对群落结构具有显著影响,即确定性过程和随机过程共同决定局域森林土壤细菌群落结构,前者占主导地位.对于土壤细菌群落而言,扩散群落的组成和结构受到源群落的多样性特征和环境因子的双重影响.  相似文献   

12.
How diversity is structured has been a central goal of microbial ecology. In freshwater ecosystems, selection has been found to be the main driver shaping bacterial communities. However, its relative importance compared with other processes (dispersal, drift, diversification) may depend on spatial heterogeneity and the dispersal rates within a metacommunity. Still, a decrease in the role of selection is expected with increasing dispersal homogenization. Here, we investigate the main ecological processes modulating bacterial assembly in contrasting scenarios of environmental heterogeneity. We carried out a spatiotemporal survey in the floodplain system of the Paraná River. The bacterioplankton metacommunity was studied using both statistical inferences based on phylogenetic and taxa turnover as well as co-occurrence networks. We found that selection was the main process determining community assembly even at both extremes of environmental heterogeneity and homogeneity, challenging the general view that the strength of selection is weakened due to dispersal homogenization. The ecological processes acting on the community also determined the connectedness of bacterial networks associations. Heterogeneous selection promoted more interconnected networks increasing β-diversity. Finally, spatiotemporal heterogeneity was an important factor determining the number and identity of the most highly connected taxa in the system. Integrating all these empirical evidences, we propose a new conceptual model that elucidates how the environmental heterogeneity determines the action of the ecological processes shaping the bacterial metacommunity.Subject terms: Community ecology, Microbial ecology  相似文献   

13.
Soil bacterial communities play fundamental roles in ecosystem functioning and often display a skewed distribution of abundant and rare taxa. So far, relatively little is known about the biogeographical patterns and mechanisms structuring the assembly of abundant and rare biospheres of soil bacterial communities. Here, we studied the geographical distribution of different bacterial sub-communities by examining the relative influence of environmental selection and dispersal limitation on taxa distributions in paddy soils across East Asia. Our results indicated that the geographical patterns of four different bacterial sub-communities consistently displayed significant distance–decay relationships (DDRs). In addition, we found niche breadth and dispersal rates to significantly explain differences in community assembly of abundant and rare taxa, directly affecting the strength of DDRs. While conditionally rare and abundant taxa displayed the strongest DDR due to higher environmental filtering and dispersal limitation, moderate taxa sub-communities had the weakest DDR due to greater environmental tolerance and dispersal rate. Random forest models indicated that soil pH (9.13%–49.78%) and average annual air temperature (16.59%–46.49%) were the most important predictors of the variation in the bacterial community. This study advances our understanding of the intrinsic links between fundamental ecological processes and microbial biogeographical patterns in paddy soils.  相似文献   

14.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   

15.

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world’s largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.

  相似文献   

16.
Co‐existence theories fail to adequately explain observed community patterns (diversity and composition) because they mainly address local extinctions. For a more complete understanding, the regional processes responsible for species formation and geographic dispersal should also be considered. The species pool concept holds that local variation in community patterns is dependent primarily on the availability of species, which is driven by historical diversification and dispersal at continental and landscape scales. However, empirical evidence of historical effects is limited. This slow progress can be attributed to methodological difficulties in determining the characteristics of historical species pools and how they contributed to diversity patterns in contemporary landscapes. A role of landscape‐scale dispersal limitation in determining local community patterns has been demonstrated by numerous seed addition experiments. However, disentangling general patterns of dispersal limitation in communities still requires attention. Distinguishing habitat‐specific species pools can help to meet both applied and theoretical challenges. In conservation biology, the use of absolute richness may be uninformative because the size of species pools varies between habitats. For characterizing the dynamic state of individual communities, biodiversity relative to species pools provides a balanced way of assessing communities in different habitats. Information about species pools may also be useful when studying community assembly rules, because it enables a possible mechanism of trait convergence (habitat filtering) to be explicitly assessed. Empirical study of the role of historic effects and dispersal on local community patterns has often been restricted due to methodological difficulties in determining habitat‐specific species pools. However, accumulating distributional, ecological and phylogenetic information, as well as use of appropriate model systems (e.g. archipelagos with known biogeographic histories) will allow the species pool concept to be applied effectively in future research.  相似文献   

17.
Yang  Teng  Shi  Yu  Zhu  Jun  Zhao  Chang  Wang  Jianmei  Liu  Zhiyong  Fu  Xiao  Liu  Xu  Yan  Jiangwei  Yuan  Meiqing  Chu  Haiyan 《中国科学:生命科学英文版》2021,64(9):1546-1559
Urban soils harbor billions of bacterial cells and millions of species. However, the distribution patterns and assembly processes of bacterial communities remain largely uncharacterized in urban soils. It is also unknown if we can use the bacteria to track soil sources to certain cities and districts. Here, Illumina MiSeq sequencing was used to survey soil bacterial communities from 529 random plots spanning 61 districts and 10 major cities in China. Over a 3,000 km range, community similarity declined with increasing geographic distance(Mantel r=0.62), and community composition was clustered by city(R~2=0.50). Within cities(100 km), the aforementioned biogeographic patterns were weakened. Process analysis showed that homogenizing dispersal and dispersal limitation dominated soil bacterial assembly at small and large spatial scales, respectively. Accordingly, the probabilities of accurately tracking random soil sources to certain cities and districts were 90.0% and 66.7%, respectively. When the tested samples originated from cities that were more than 1,265 km apart, the soil sources could be identified with nearly 100% accuracy. Overall, this study demonstrates the strong distance-decay relationship and the clear geographic zoning of urban soil bacterial communities among cities. The varied importance of different community assembly processes at multiple spatial scales strongly affects the accuracy of microbial source tracking.  相似文献   

18.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

19.
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology.  相似文献   

20.
A full understanding of the origin and maintenance of β-diversity patterns in a region requires exploring the relationships of both taxonomic and phylogenetic β-diversity (TBD and PBD, respectively), and their respective turnover and nestedness components, with geographic and environmental distances. Here, we simultaneously investigated all these aspects of β-diversity for angiosperms in China. Specifically, we evaluated the relative importance of environmental filtering vs dispersal limitation processes in shaping β-diversity patterns. We found that TBD and PBD as quantified using a moving window approach decreased towards higher latitudes across the whole of China, and their turnover components were correlated with latitude more strongly than their nestedness components. When quantifying β-diversity as pairwise distances, geographic and climatic distances across China together explained 60 and 53% of the variation in TBD and PBD, respectively. After the variation in β-diversity explained by climatic distance was accounted for, geographic distance independently explained about 23 and 12% of the variation in TBD and PBD, respectively, across China. Overall, our results suggest that environmental filtering based on climatic tolerance conserved across lineages is the main force shaping β-diversity patterns for angiosperms in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号