首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硝基芳香族化合物是非常重要的有机化工原料,也是难降解有机污染物之一。相对于传统去除法,利用微生物矿化或非特异性的转化,使硝基芳香族化合物成为生物地化循环的一部分,从而降低对环境污染的修复手段更具有可持续性。本文综述了降解硝基芳香族化合物的微生物资源及其降解途径、降解机理、相关修复方式等的研究进展。  相似文献   

2.
Polychlorinated biphenyls (PCBs) are one of the most widely distributed classes of chlorinated chemicals in the environment. For cleanup of large areas of PCB-contaminated environments, bioremediation seems to be a promising approach. However, the multitude of PCB congeners, their low bioavailability and high toxicity are important factors that affect the cleanup progression. Elucidating how the PCB-degrading microorganisms involved in the process adapt to and deal with the stressing conditions caused by this class of compounds may help to improve the bioremediation process. Also specific physiological characteristics of biphenyl-utilizing bacteria involved in the degradation of PCBs may enhance their availability to these compounds and therefore contribute to a better microbial mineralization. This review will focus in the stress responses caused in aerobic biphenyl-utilizing bacteria by PCBs and its metabolic intermediates and will also analyze bacterial properties such as motility and chemotaxis, adherence to solid surfaces, biosurfactant production and biofilm development, all properties found to enhance bacteria-pollutant interaction.  相似文献   

3.
闵军  陈卫卫  李俊德  胡晓珂 《微生物学报》2020,60(12):2816-2835
硝基芳烃化合物作为一种重要的化工原料,广泛应用于医药、染料、农药等化工产品的合成。在给人类社会带来空前的物质繁荣的同时,其造成的环境污染问题也成为人类社会面临的重要挑战之一。微生物在这些环境污染物的降解中起着重要的作用。近几十年,环境微生物工作者对微生物降解硝基芳香污染物的各个步骤,包括趋化感应、分解代谢及生物修复进行了大量的研究工作,获得了丰富的知识。本文综述了硝基芳烃及其卤代衍生物的微生物代谢途径、代谢机理、趋化及修复研究进展,并对本领域的研究进行了展望,有助于全面认知硝基芳烃污染物的微生物降解过程,为污染环境修复提供理论基础。  相似文献   

4.
Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

5.
Abstract

Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.  相似文献   

6.
Bacteria-mediated PAH degradation in soil and sediment   总被引:3,自引:0,他引:3  
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the natural environment and easily accumulate in soil and sediment due to their low solubility and high hydrophobicity, rendering them less available for biological degradation. However, microbial degradation is a promising mechanism which is responsible for the ecological recovery of PAH-contaminated soil and sediment for removing these recalcitrant compounds compared with chemical degradation of PAHs. The goal of this review is to provide an outline of the current knowledge of biodegradation of PAHs in related aspects. Over 102 publications related to PAH biodegradation in soil and sediment are compiled, discussed, and analyzed. This review aims to discuss PAH degradation under various redox potential conditions, the factors affecting the biodegradation rates, degrading bacteria, the relevant genes in molecular monitoring methods, and some recent-year bioremediation field studies. The comprehensive understanding of the bioremediation kinetics and molecular means will be helpful for optimizing and monitoring the process, and overcoming its limitations in practical projects.  相似文献   

7.
Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.  相似文献   

8.
Biofilms: implications in bioremediation   总被引:2,自引:0,他引:2  
Biofilms are assemblages of single or multiple populations that are attached to abiotic or biotic surfaces through extracellular polymeric substances. Gene expression in biofilm cells differs from planktonic stage expression and these differentially expressed genes regulate biofilm formation and development. Biofilm systems are especially suitable for the treatment of recalcitrant compounds because of their high microbial biomass and ability to immobilize compounds. Bioremediation is also facilitated by enhanced gene transfer among biofilm organisms and by the increased bioavailability of pollutants for degradation as a result of bacterial chemotaxis. Strategies for improving bioremediation efficiency include genetic engineering to improve strains and chemotactic ability, the use of mixed population biofilms and optimization of physico-chemical conditions. Here, we review the formation and regulation of biofilms, the importance of gene transfer and discuss applications of biofilm-mediated bioremediation processes.  相似文献   

9.
Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the anoxic zones of the environment. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene and the bacteria involved in anaerobic benzene degradation. Here, we review the existing knowledge on the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria, in particular the physiology and application, including results on the (per)chlorate stimulated degradation of these compounds, which is an interesting new alternative option for bioremediation.  相似文献   

10.
11.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats, CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

12.
Biological cyanide destruction mediated by microorganisms   总被引:6,自引:0,他引:6  
Many microorganisms have an inherent capacity to degrade the toxic organic compounds that enter the environment as a result of pollution and natural activities. Significant degradation of these compounds may take many years and it is frequently necessary to consider methods that can accelerate this process. There have been several demonstrations of enhanced biological degradation of toxic wastes, both in the laboratory and under field conditions. The prospects for enhanced biological cyanide degradation are reviewed. Compared with bench-scale processes, there are very few reports of field-scale processes for cyanide bioremediation. The implementation of such field-scale degradation requires inputs from biology, hydrology, geology, chemistry and civil engineering. A conceptual framework is emerging that can be adapted to develop new processes for bioremediation of toxic organic wastes. In terms of cyanide biodegradation, this framework incorporates identification of microbes, determination of the optimal conditions for degradation, establishment of the metabolic pathways involved in cyanide degradation, identification and localization of the genes involved, identification of suitable microbial strains for practical application and development of practical engineering processes. The present review addresses the progress that has been made in each of these aspects of cyanide biodegradation. It also examines the existing field applications of biological cyanide degradation and makes recommendations for future research.Dr S.K. Dubey is and Dr D.S. Holmes was with the Department of Biology, Clarkson University, Potsdam, NY 13699, USA. Dr D.S. Holmes is now affiliated with Centro de Estudios Cientifigos de Santiago, Av. Presedente Errazuriz 3132, Casilla 16443, Santiago 9, Chile.  相似文献   

13.
There is widespread use of chemical amendments to meet the demands for increased productivity in agriculture. Potentially toxic compounds, single or in mixtures, are added to the soil medium on a regular basis, while the ecotoxicological risk assessment procedures mainly follow a chemical by chemical approach. Picoxystrobin is a fungicide that has caused concern due to studies showing potentially detrimental effects to soil fauna (earthworms), while negative effects on soil microbial activities (nitrification, respiration) are shown to be transient. Potential mixture situations with nonylphenol, a chemical frequently occurring as a contaminant in sewage sludge used for land application, infer a need to explore whether these chemicals in mixture could alter the potential effects of picoxystrobin on the soil microflora. The main objective of this study was to assess the effects of picoxystrobin and nonylphenol, as single chemicals and mixtures, on soil microbial community structure and respiration activity in an agricultural sandy loam. Effects of the chemicals were assessed through measurements of soil microbial respiration activity and soil bacterial and fungal community structure fingerprints, together with a degradation study of the chemicals, through a 70 d incubation period. Picoxystrobin caused a decrease in the respiration activity, while 4-n-nonylphenol caused an increase in respiration activity concurring with a rapid degradation of the substance. Community structure fingerprints were also affected, but these results could not be directly interpreted in terms of positive or negative effects, and were indicated to be transient. Treatment with the chemicals in mixture caused less evident changes and indicated antagonistic effects between the chemicals in soil. In conclusion, the results imply that the application of the fungicide picoxystrobin and nonylphenol from sewage sludge application to agricultural soil in environmentally relevant concentrations, as single chemicals or in mixture, will not cause irreversible effects on soil microbial respiration and community structure.  相似文献   

14.
Soils are the final sink for multiple organic pollutants emitted to the environment. Some of these chemicals which are toxic, recalcitrant and can bioaccumulate in living organism and biomagnify in trophic chains are classified persistent organic pollutants (POP). Vast areas of arable land have been polluted by POPs and the only economically possible means of decontamination is bioremediation, that is the utilization of POP-degrading microbes. Especially useful can be non-ligninolytic fungi, as their fast-growing mycelia can reach POP molecules strongly bond to soil minerals or humus fraction inaccessible to bacteria. The mobilized POP molecules are incorporated into the fungal plasma membrane where their degradation begins. The presence of POP molecules in the membranes can change their physical properties and trigger toxic effects to the cell. To avoid these phenomena fungi can quickly remodel the phospholipid composition of their membrane with employing different phospholipases and acyltransferases. However, if the presence of POP downregulates the phospholipases, toxic effects and the final death of microbial cells are highly probable. In our studies we applied multicomponent Langmuir monolayers with their composition mimicking fungal plasma membranes and studied their interactions with two different microbial phospholipases: phospholipase C (α-toxin) and phospholipase A1 (Lecitase ultra). The model membranes were doped with selected POPs that are frequently found in contaminated soils. It turned out that most of the employed POPs do not downregulate considerably the activity of phospholipases, which is a good prognostics for the application of non-ligninolytic fungi in bioremediation.  相似文献   

15.
细菌对环境污染物的趋化性及其在生物修复中的作用   总被引:5,自引:0,他引:5  
细菌对有机化合物的降解能力是一种利用碳源和能源的优势,这种能力可以用来设计安全、有效和无二次污染的污染物的生物修复系统。趋化性是细菌适应外界化学环境变化而作出的行为反应,是一种寻找碳源和能源的优势。细菌的趋化性能够增强细菌在自然环境中的降解污染物的效果,细菌的趋化性与降解性之间的关系研究已经成为热点。介绍了细菌的趋化性的基本概念和趋化信号转导的机制,重点讨论了细菌对环境污染化合物的趋化性,从基因水平揭示了趋化性与降解性之间的紧密联系,认为趋化性可以有效地促进降解性细菌对污染物的生物修复作用。  相似文献   

16.
土壤微孔对有机物吸附/解吸的影响及其表征   总被引:2,自引:0,他引:2  
土壤吸附是影响环境中有机化合物迁移、降解及生物有效性的重要过程,而微孔的存在是影响有机化合物慢吸附过程的重要因素之一,土壤孔隙结构(pore structure)及土壤微孔的研究对于理解发生在土壤中的吸附/解吸过程十分必要.综述了近年来土壤微孔对有机化合物吸附解吸行为影响的研究态势,包括土壤的孔隙结构及微孔的存在形式、微孔吸附有机化合物的吸附动力学和可能机理、土壤中微孔表征的技术方法、孔隙大小分布的计算以及对未来的研究展望,以期对土壤有机污染生物修复的深入研究提供理论依据.  相似文献   

17.
Inorganic cyanide and nitrile compounds are distributed widely in the environment, chiefly as a result of anthropogenic activity but also through cyanide synthesis by a range of organisms including higher plants, fungi and bacteria. The major source of cyanide in soil and water is through the discharge of effluents containing a variety of inorganic cyanide and nitriles. Here the fate of cyanide compounds in soil and water is reviewed, identifying those factors that affect their persistence and which determine whether they are amenable to biological degradation. The exploitation of cyanides by a variety of taxa, as a mechanism to avoid predation or to inhibit competitors has led to the evolution in many organisms of enzymes that catalyse degradation of a range of cyanide compounds. Microorganisms expressing pathways involved in cyanide degradation are briefly reviewed and the current applications of bacteria and fungi in the biodegradation of cyanide contamination in the field are discussed. Finally, recent advances that offer an insight into the potential of microbial systems for the bioremediation of cyanide compounds under a range of environmental conditions are identified, and the future potential of these technologies for the treatment of cyanide pollution is discussed.  相似文献   

18.
Bioremediation, the use of microorganisms to detoxify and degrade hazardous wastes, is an emerging in situ treatment technology for the remediation of contaminated aquifers and subsurface soils. This technology depends upon the alteration of the physical/chemical conditions in the subsurface environment to optimize microbiological activity. As such, successful bioremediation depends not only upon an understanding of microbial degradation processes, but also upon an understanding of the complex interactions that occur between the contaminants, the subsurface environment, and the indigenous microbial populations at each site. At present, these interactions are poorly understood. Site‐specific evaluation and design therefore are essential for bioremediation. In this paper, we review microbiological, hydrological, and geochemical factors that should be considered in evaluating the appropriateness of bioremediation for hazardous waste‐contaminated aquifers and subsurface soils.  相似文献   

19.
石油化工产品的不合理处置与泄漏导致石油及其衍生物大量释放到环境中,由此造成的环境污染问题日益严重,石油污染已成为全球性公害之一。微生物修复技术凭借其成本低、环境友好等优势,广泛应用于石油污染的治理。大量研究表明功能微生物群落在石油污染生态系统的修复体系中发挥了重要的作用。其中,细菌是最主要、最活跃的石油降解微生物。然而,在原位/异位生物修复过程中,存在功能菌群在污染体系中难维持、易失调及石油烃降解途径不明晰等问题。因此,本文总结了石油污染自然生态系统和微宇宙实验体系中的细菌群落结构、石油烃代谢机制及相关功能基因,并对微生物法处理石油污染的未来研究方向提出展望,为石油污染场地生物修复方案的制定提供理论参考。  相似文献   

20.
Given the immense risk posed by widespread environmental pollution by inorganic and organic chemicals, novel methods of decontamination and clean-up are required. Owing to the relatively high cost and the non-specificity of conventional techniques, bioremediation is a promising alternative technology for pollutant clean-up. Advances in bioremediation harness molecular, genetic, microbiology, and protein engineering tools and rely on identification of novel metal-sequestering peptides, rational and irrational pathway engineering, and enzyme design. Recent advances have been made for enhanced inorganic chemical remediation and organic chemical degradation using various pathway-engineering approaches and these are discussed in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号