首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mithramycin is an aromatic antitumour polyketide synthesized by Streptomyces argillaceus. Two chromosomal regions located upstream and downstream of the locus for the mithramycin type II polyketide synthase were cloned and sequenced. Analysis of the sequence revealed the presence of eight genes encoding three oxygenases (mtmOI, mtmOII and mtmOIII), three reductases (mtmTI, mtmTII and mtmTIII), a cyclase (mtmY) and an acyl CoA ligase (mtmL). The three oxygenase genes were each inactivated by gene replacement. Inactivation of one of them (mtmOII) generated a non-producing mutant, while inactivation of the other two (mtmOI and mtmOIII) did not affect the biosynthesis of mithramycin. The mtmOII gene may code for an oxygenase responsible for the introduction of oxygen atoms at early steps in the biosynthesis of mithramycin leading to 4-demethylpremithramycinone. One of the reductases may be responsible for reductive cleavage of an intermediate from an enzyme and another for the reduction of a keto group in the side-chain of the mithramycin aglycon moiety. A hypothetical biosynthetic pathway showing in particular the involvement of oxygenase MtmOII and of various other gene products in mithramycin biosynthesis is proposed. Received: 13 August 1998 / Accepted: 30 October 1998  相似文献   

2.
A 2580-bp region of the chromosome of Streptomyces argillaceus, the producer of the antitumor polyketide mithramycin, was sequenced. Analysis of the nucleotide sequence revealed the presence of two genes (mtmGIII and mtmGIVv) encoding proteins that showed a high degree of similarity to glycosyltransferases involved in the biosynthesis of various antibiotics and antitumor drugs. Independent insertional inactivation of both genes produced mutants that did not synthesize mithramycin but accumulated several mithramycin intermediates. Both mutants accumulated premithramycinone, a non-glycosylated intermediate in mithramycin biosynthesis. The mutant affected in the mtmGIII gene also accumulated premithramycin A1, which contains premithramycinone as the aglycon unit and a D-olivose attached at C-12a-O. These experiments demonstrate that the glycosyltransferases MtmGIV and MtmGIII catalyze the first two glycosylation steps in mithramycin biosynthesis. A model is proposed for the glycosylation steps in mithramycin biosynthesis.  相似文献   

3.
A 2580-bp region of the chromosome of Streptomyces argillaceus, the producer of the antitumor polyketide mithramycin, was sequenced. Analysis of the nucleotide sequence revealed the presence of two genes (mtmGIII and mtmGIV?) encoding proteins that showed a high degree of similarity to glycosyltransferases involved in the biosynthesis of various antibiotics and antitumor drugs. Independent insertional inactivation of both genes produced mutants that did not synthesize mithramycin but accumulated several mithramycin intermediates. Both mutants accumulated premithramycinone, a non-glycosylated intermediate in mithramycin biosynthesis. The mutant affected in the mtmGIII gene also accumulated premithramycin A1, which contains premithramycinone as the aglycon unit and a D-olivose attached at C-12a-O. These experiments demonstrate that the glycosyltransferases MtmGIV and MtmGIII catalyze the first two glycosylation steps in mithramycin biosynthesis. A model is proposed for the glycosylation steps in mithramycin biosynthesis.  相似文献   

4.
A collection of actinomycin-producing Streptomycesstrains, their variants with different levels of antibiotic biosynthesis, and recombinant strains were screened in order to select new strains that produce polyketide antibiotics. Screening with the use of the cloned actgene encoding a component of actinorhodin polyketide synthase (PKS) multienzyme complex from Streptomyces coelicolorrevealed that many strains tested can synthesize polyketide antibiotics along with actinomycins. A relationship between the biosynthetic pathways of actinomycins and polyketides is discussed.  相似文献   

5.
Summary There are now several examples showing that hybrid secondary metabolites can be produced as a result of interspecies cloning of antibiotic biosynthesis genes in streptomycetes. This paper reviews examples of hybrid secondary metabolite production, and examines the underlying biochemical and regulatory principles leading to the formation of hybrid anthraquinones by recombinant anthracycline-producing streptomycetes carrying actinorhodin biosynthesis genes. An anthraquinone, aloesaponarin II, was produced by cloning theactI, actIII, actIV, andactVII genes (pANT12) of actinorhodin biosynthesis pathway fromStreptomyces coelicolor in anthracycline producing streptomycetes.Streptomyces galilaeus strains 31 133 and 31 671, aclacinomycin and 2-hydroxyaklavinone producers, respectively, formed aloesaponarin II as their major polyketide product when transformed with pANT12. Subcloning experiments indicated that a 2.8-kbXhoI fragment containing only theactI andactVII loci was necessary for aloesaponarin II biosynthesis byS. galilaeus 31 133. WhenS. galilaeus 31 671 was transformed with theactI, actVII, andactIV genes, however, the recombinant strain produced two novel anthraquinones, desoxyerythrolaccin and 1-0-methyldesoxyerythrolaccin. WhenS. galilaeus 31671 was transformed with only the intactactIII gene (pANT45), aklavinone was formed exclusively. These experiments indicate a function for theactIII gene, which is the reduction of the keto group at C-9 from the carboxyl terminus of the assembled polyketide to the corresponding secondary alcohol. The effects of three regulatory loci,dauG, dnrR1, andasaA, on the production of natural and hybrid polyketides were also shown.  相似文献   

6.
《Gene》1996,172(1):87-91
Mithramycin (Mtm) is an aromatic polyketide which shows antibacterial and antitumor activity. From a chromosomal cosmid library of Streptomyces argillaceus, a Mtm producer, a clone (cosAR7) was isolated by homology to the actI/III region of S. coelicolor and the strDEM genes of S. griseus. From this clone, a 5.3-kb DNA region was sequenced and found to encode six open reading frames (designated as mtmQXPKSTI), five of them transcribed in the same direction. The deduced products of five of these genes resembled components of type-II polyketide synthases. The mtm genes would code for an aromatase (mtmQ), a polypeptide of unknown function (mtmX), a β-ketoacylsynthase (mtmP) and a related ‘chain length factor’ (mtmK), an acyl carrier protein (mtmS) and a β-ketoreductase (mtmT1). The involvement of this gene cluster in Mtm biosynthesis was demonstrated by the Mtm non-producing phenotype of mutants generated in two independent insertional inactivation experiments.  相似文献   

7.
Sequencing of a 4.3-kb DNA region from the chromosome of Streptomyces argillaceus, a mithramycin producer, revealed the presence of two open reading frames (ORFs). The first one (orfA) codes for a protein that resembles several transport proteins. The second one (mtmR) codes for a protein similar to positive regulators involved in antibiotic biosynthesis (DnrI, SnoA, ActII-orf4, CcaR, and RedD) belonging to the Streptomyces antibiotic regulatory protein (SARP) family. Both ORFs are separated by a 1.9-kb, apparently noncoding region. Replacement of the mtmR region by an antibiotic resistance cassette completely abolished mithramycin biosynthesis. Expression of mtmR in a high-copy-number vector in S. argillaceus caused a 16-fold increase in mithramycin production. The mtmR gene restored actinorhodin production in Streptomyces coelicolor JF1 mutant, in which the actinorhodin-specific activator ActII-orf4 is inactive, and also stimulated actinorhodin production by Streptomyces lividans TK21. A 241-bp region located 1.9 kb upstream of mtmR was found to be repeated approximately 50 kb downstream of mtmR at the other end of the mithramycin gene cluster. A model to explain a possible route for the acquisition of the mithramycin gene cluster by S. argillaceus is proposed.  相似文献   

8.
杨晓歌  王国君  李霄 《微生物学报》2018,58(9):1531-1541
海绵体动物分离到的聚酮类化合物很多是由其共生或附生微生物体内的trans-AT聚酮合成酶催化产生的。利用宏基因组技术克隆具有生物活性的聚酮化合物的生物合成基因簇,不但能阐明活性化合物的生物合成路径,而且可以通过异源表达获得目标化合物。本文综述了海绵体动物来源的trans-AT聚酮合成酶产生的聚酮化合物生物合成及其基因簇的研究进展。  相似文献   

9.
【目的】从菌株Streptomyces albus DSM 41398的发酵产物中发掘结构多样的由I型聚酮合酶催化形成的化合物,以期找到具有新颖结构或强生物活性的化合物。在结构鉴定的基础上,对其生物合成途径进行分析。【方法】利用HPLC分析方法,通过系统比较野生型菌株S.albus DSM 41398与I型聚酮合酶编码基因簇失活突变株的发酵产物差异,实现目标化合物的定向分离。然后,利用~1H-和~(13)C-NMR以及HR-ESI-MS进行化合物的结构鉴定。最后,利用生物信息学等方法对化合物的生物合成途径进行推测和分析。【结果】从5 L的S.albus DSM 41398发酵产物中,分离得到了2个具有抗肿瘤活性的聚酮类化合物放线吡喃酮和洋橄榄菌素,分别定位了它们的生物合成基因簇,并分别对其生物合成途径进行了推导。其中,放线吡喃酮的生物合成基因簇为首次报道。【结论】本研究一方面为基因组发掘S.albus DSM 41398中其他由I型聚酮合酶催化形成的化合物提供参考,另一方面也为相关化合物的结构修饰改造奠定了良好的基础。  相似文献   

10.
A cluster encoding genes for the biosynthesis of meilingmycin, a macrolide antibiotic structurally similar to avermectin and milbemycin 11, was identified among seven uncharacterized polyketide synthase gene clusters isolated from Streptomyces nanchangensis NS3226 by hybridization with PCR products using primers derived from the sequences of aveE, aveF and a thioesterase domain of the avermectin biosynthetic gene cluster. Introduction of a 24.1-kb deletion by targeted gene replacement resulted in a loss of meilingmycin production, confirming that the gene cluster encodes biosynthesis of this important anthelminthic antibiotic compound. A sequenced 8.6-kb fragment had aveC and aveE homologues (meiC and meiE) linked together, as in the avermectin gene cluster, but the arrangement of aveF (meiF) and the thioesterase homologues differed. The results should pave the way to producing novel insecticidal compounds by generating hybrids between the two pathways.  相似文献   

11.
Streptomyces arenae produces at least four different isochromanequinone antibiotics, the naphthocyclinones, of which the - and -form are active against Gram-positive bacteria. The naphthocyclinone biosynthesis gene cluster was isolated from Streptomyces arenae DSM 40737 and by sequence analysis the minimal polyketide synthase genes and several genes encoding tailoring enzymes were identified. Southern blot analysis of the naphthocyclinone gene cluster indicated that a 3.5 kb BamHI fragment located approximately 9 kb downstream of the minimal PKS genes hybridizes to the schC hydroxylase DNA probe isolated from S. halstedii. Two complete and one incomplete open reading frames were identified on this fragment. Sequence analysis revealed strong homology to the genes of the actVA region of S. coelicolor, to several (suggested) hydroxylases and a putative FMN-dependent monooxygenase. The proposed hydroxylase, encoded by ncnH, could hydroxylate aloesaponarin II, a molecule that is produced by the actinorhodin minimal polyketide synthase in combination with the actinorhodin ketoreductase, aromatase and cyclase. Furthermore, this enzyme is capable of accepting additional polyketide core structures that contain a 5-hydroxy-1,4-naphthoquinone moiety as substrates which makes it an interesting tailoring enzyme for the modification of polyketide structures.  相似文献   

12.
To develop a system for combinatorial biosynthesis of glycosylated macrolides, Streptomyces venezuelae was genetically manipulated to be deficient in the production of its macrolide antibiotics by deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of thymidine diphosphate (TDP)-d-quinovose or TDP-d-olivose in conjunction with the glycosyltransferase–auxiliary protein pair DesVII/DesVIII derived from S. venezuelae were expressed in the mutant strain. Feeding the representative 12-, 14-, and 16-membered ring macrolactones including 10-deoxymethynolide, narbonolide, and tylactone, respectively, to each mutant strain capable of producing TDP-d-quinovose or TDP-d-olivose resulted in the successful production of the corresponding quinovose- and olivose-glycosylated macrolides. In mutant strains where the DesVII/DesVIII glycosyltransferase–auxiliary protein pair was replaced by TylMII/TylMIII derived from Streptomyces fradiae, quinovosyl and olivosyl tylactone were produced; however, neither glycosylated 10-deoxymethynolide nor narbonolide were generated, suggesting that the glycosyltransferase TylMII has more stringent substrate specificity toward its aglycones than DesVII. These results demonstrate successful generation of structurally diverse hybrid macrolides using a S. venezuelae in vivo system and provide further insight into the substrate flexibility of glycosyltransferases. Won Seok Jung and Ah Reum Han contributed equally to this work.  相似文献   

13.
The known functions of type II thioesterases (TEIIs) in type I polyketide synthases (PKSs) include selecting of starter acyl units, removal of aberrant extender acyl units, releasing of final products, and dehydration of polyketide intermediates. In this study, we characterized two TEIIs (ScnI and PKSIaTEII) from Streptomyces chattanoogensis L10. Deletion of scnI in S. chattanoogensis L10 decreased the natamycin production by about 43%. Both ScnI and PKSIaTEII could remove acyl units from the acyl carrier proteins (ACPs) involved in the natamycin biosynthesis. Our results show that the TEII could play important roles in both the initiation step and the elongation steps of a polyketide biosynthesis; the intracellular TEIIs involved in different biosynthetic pathways could complement each other.  相似文献   

14.
Coronafacoyl phytotoxins are secondary metabolites that are produced by various phytopathogenic bacteria, including several pathovars of the Gram‐negative bacterium Pseudomonas syringae as well as the Gram‐positive potato scab pathogen Streptomyces scabies. The phytotoxins are composed of the polyketide coronafacic acid (CFA) linked via an amide bond to amino acids or amino acid derivatives, and their biosynthesis involves the cfa and cfa‐like gene clusters that are found in P. syringae and S. scabies, respectively. The S. scabies cfa‐like gene cluster was previously reported to contain several genes that are absent from the P. syringae cfa gene cluster, including one (oxr) encoding a putative F420—dependent oxidoreductase, and another (sdr) encoding a predicted short‐chain dehydrogenase/reductase. Using gene deletion analysis, we demonstrated that both oxr and sdr are required for normal production of the S. scabies coronafacoyl phytotoxins, and structural analysis of metabolites that accumulated in the Δsdr mutant cultures revealed that Sdr is directly involved in the biosynthesis of the CFA moiety. Our results suggest that S. scabies and P. syringae use distinct biosynthetic pathways for producing coronafacoyl phytotoxins, which are important mediators of host‐pathogen interactions in various plant pathosystems.  相似文献   

15.
16.
Development of host microorganisms for heterologous expression of polyketide synthases (PKS) that possess the intrinsic capacity to overproduce polyketides with a broad spectrum of precursors supports the current demand for new tools to create novel chemical structures by combinatorial engineering of modular and other classes of PKS. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors—malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA—used by modular PKS, and is a host that is amenable to genetic manipulation. We have expanded the utility of an overproducing S. fradiae strain for engineered biosynthesis of polyketides by engineering a biosynthetic pathway for methoxymalonyl-ACP, a fourth precursor used by many 16-membered macrolide PKS. This was achieved by introducing a set of five genes, fkbG–K from Streptomyces hygroscopicus, putatively encoding the methoxymalonyl-ACP biosynthetic pathway, into the S. fradiae chromosome. Heterologous expression of the midecamycin PKS genes in this strain resulted in 1 g/l production of a midecamycin analog. These results confirm the ability to engineer unusual precursor pathways to support high levels of polyketide production, and validate the use of S. fradiae for overproduction of 16-membered macrolides derived from heterologous PKS that require a broad range of precursors.  相似文献   

17.
《Gene》1996,169(1):1-7
Analysis of the gene cluster from Streptomyces hygroscopicus that governs the biosynthesis of the polyketide immuno-suppressant rapamycin (Rp) has revealed that it contains three exceptionally large open reading frames (ORFs) encoding the modular polyketide synthase (PKS). Between two of these lies a fourth gene (rapP) encoding a pipecolate-incorporating enzyme that probably also catalyzes closure of the macrolide ring. On either side of these very large genes are ranged a total of 22 further ORFs before the limits of the cluster are reached, as judged by the identification of genes clearly encoding unrelated activities. Several of these ORFs appear to encode enzymes that would be required for Rp biosynthesis. These include two cytochrome P-450 monooxygenases (P450s), designated RapJ and RapN, an associated ferredoxin (Fd) RapO, and three potential SAM-dependent O-methyltransferases (MTases), RapI, RapM and RapQ. All of these are likely to be involved in ‘late’ modification of the macrocycle. The cluster also contains a novel gene (rapL) whose product is proposed to catalyze the formation of the Rp precursor, L-pipecolate, through the cyclodeamination of L-lysine. Adjacent genes have putative roles in Rp regulation and export. The codon usage of the PKS biosynthetic genes is markedly different from that of the flanking genes of the cluster  相似文献   

18.
In actinomycetes, the onset of secondary metabolite biosynthesis is often triggered by the quorum-sensing signal γ-butyrolactones (GBLs) via specific binding to their cognate receptors. However, the presence of multiple putative GBL receptor homologues in the genome suggests the existence of an alternative regulatory mechanism. Here, in the model streptomycete Streptomyces coelicolor, ScbR2 (SCO6286, a homologue of GBL receptor) is shown not to bind the endogenous GBL molecule SCB1, hence designated “pseudo” GBL receptor. Intriguingly, it could bind the endogenous antibiotics actinorhodin and undecylprodigiosin as ligands, leading to the derepression of KasO, an activator of a cryptic type I polyketide synthase gene cluster. Likewise, JadR2 is also a putative GBL receptor homologue in Streptomyces venezuelae, the producer of chloramphenicol and cryptic antibiotic jadomycin. It is shown to coordinate their biosynthesis via direct repression of JadR1, which activates jadomycin biosynthesis while repressing chloramphenicol biosynthesis directly. Like ScbR2, JadR2 could also bind these two disparate antibiotics, and the interactions lead to the derepression of jadR1. The antibiotic responding activities of these pseudo GBL receptors were further demonstrated in vivo using the lux reporter system. Overall, these results suggest that pseudo GBL receptors play a novel role to coordinate antibiotic biosynthesis by binding and responding to antibiotics signals. Such an antibiotic-mediated regulatory mechanism could be a general strategy to coordinate antibiotic biosynthesis in the producing bacteria.  相似文献   

19.
Exploiting marine actinomycete biosynthetic pathways for drug discovery   总被引:4,自引:0,他引:4  
Drug discovery relies on the generation of large numbers of structurally diverse compounds from which a potential candidate can be identified. To this end, actinomycetes have often been exploited because of their ability to biosynthesize an impressive array of novel metabolites particularly polyketides. The genetic organization of polyketide synthases (PKSs) makes them readily amenable to manipulation, and thus re-engineering artificial or hybrid PKSs to produce unnatural natural products is a reality. This review highlights two approaches we have used to generate novel polyketides by manipulating genes responsible for starter unit biosynthesis in the Streptomyces maritimus enterocin type II PKS. Our preliminary investigation into the biosynthesis of neomarinone, a rare marine actinomycete-derived meroterpenoid, is also presented.  相似文献   

20.
A gene, schC, adjacent to the sch gene cluster encoding the biosynthesis of a polyketide spore pigment in Streptomyces halstedii was sequenced. Its deduced product resembled flavin adenine nucleotide-containing hydroxylases involved in the biosynthesis of polycyclic aromatic polyketide antibiotics and in catabolic pathways of aromatic compounds. When schC was disrupted, the normally green spores of S. halstedii became lilac. An schC-like gene was located in an equivalent position next to a large gene cluster (whiE) known to determine spore pigment in Streptomyces coelicolor A3(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号