首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang X  Ma Y  Huang C  Wan Q  Li N  Bi Y 《Planta》2008,227(3):611-623
In the present study, we investigated the role of glucose-6-phosphate dehydrogenase (G6PDH) in regulating the levels of reduced form of glutathione (GSH) to the tolerance of calli from two reed ecotypes, Phragmites communis Trin. dune reed (DR) and swamp reed (SR), in a long-term salt stress. G6PDH activity was higher in SR callus than that of DR callus under 50–150 mM NaCl treatments. In contrast, at higher NaCl concentrations (300–600 mM), G6PDH activity was lower in SR callus. A similar profile was observed in GSH contents, glutathione reductase (GR) and glutathione peroxidase (GPX) activities in both salt-stressed calli. After G6PDH activity and expression were reduced in glycerol treatments, GSH contents and GR and GPX activity decreased strongly in both calli. Simultaneously, NaCl-induced hydrogen peroxide (H2O2) accumulation was also abolished. Exogenous application of H2O2 increased G6PDH, GR, and GPX activities and GSH contents in the control conditions and glycerol treatment. Diphenylene iodonium (DPI), a plasma membrane (PM) NADPH oxidase inhibitor, which counteracted NaCl-induced H2O2 accumulation, decreased these enzymes activities and GSH contents. Furthermore, exogenous application of H2O2 abolished the N-acetyl-l-cysteine (NAC)-induced decrease in G6PDH activity, and DPI suppressed the effect of buthionine sulfoximine (BSO) on induction of G6PDH activity. Western-blot analyses showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI in DR callus. Taken together, G6PDH activity involved in GSH maintenance and H2O2 accumulation under salt stress. And H2O2 regulated G6PDH, GR, and GPX activities to maintain GSH levels. In the process, G6PDH plays a central role.  相似文献   

2.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

3.
Escherichia coli possesses two hydrogenases, Hyd-3 and Hyd-4. These, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenlyases, FHL-1 and FHL-2, both catalyzing the decomposition of formate to H2 and CO2 during fermentative growth. FHL-1 is the major pathway at acidic pH whereas FHL-2 is proposed for slightly alkaline pH. In this study, regulation of activity of these pathways by formate has been investigated. In cells grown under fermentative conditions on glucose in the presence of 30 mM formate at pH 7.5, intracellular pH was decreased to 7.1, the activity of Fdh-H raised 3.5-fold, and the production of H2 became mostly Hyd-3 dependent. These results suggest that at alkaline pH formate increases an activity of Fdh-H and of Hyd-3 both but not of Hyd-4. Received: 27 December 2001 / Accepted: 25 January 2002  相似文献   

4.
The reduced coenzyme nicotinamide-adenine dinucleotide phosphate (NADPH) is an important molecule in cellular redox balance. Glucose-6-phosphate dehydrogenase (G6PDH) is a key enzyme in the pentose phosphate pathway, the most important NADPH-generating pathway. In this study, roles of G6PDH in maintaining cell redox balance in rice suspension cells under salt stress were investigated. Results showed that the G6PDH activity decreased in the presence of 80 mM NaCl on day 2. Application of exogenous glucose stimulated the activity of G6PDH and NADPH oxidase under salt stress. Exogenous glucose also increased the ion leakage, thiobarbituric acid reactive substances and hydrogen peroxide (H2O2) contents in the presence of 80 mM NaCl on day 2, implying that the reduction of the G6PDH activity was necessary to avoid serious damage caused by salt stress. The NAPDH/NADP+ ratio increased on day 2 but decreased on day 4 under 80 mM NaCl plus glucose treatment. Diphenyleneiodonium, an NADPH oxidase inhibitor, decreased the H2O2 content under 80 mM NaCl treatment on day 2. These results imply that the H2O2 accumulation induced by glucose treatment under salt stress on day 2 was related to the NADPH oxidase. Western-blot analysis showed that the G6PDH expression was slightly induced by glucose and was obviously blocked by DPI on day 2 under salt stress. In conclusion, G6PDH plays a key role in maintaining the cell redox balance in rice suspension cells under salt stress. The coordination of G6PDH and NADPH oxidase is required in maintaining cell redox balance in salt tolerance.  相似文献   

5.
H. Gong  G. Chen  F. Li  X. Wang  Y. Hu  Y. Bi 《Biologia Plantarum》2012,56(3):422-430
Glucose-6-phosphate dehydrogenase (G6PDH) has been implicated in supplying reduced nicotine amide cofactors for biochemical reactions and in modulating the redox state of cells. In this study, the role of G6PDH in thermotolerance of the calli from Przewalskia tangutica and tobacco (Nicotiana tabacum L.) was investigated. Results showed that Przewalskia tangutica callus was more sensitive to heat stress than tobacco callus. The activity of G6PDH and antioxidant enzymes (ascorbate peroxidase, catalase, peroxidase and superoxide dismutase) in calli from Przewalskia tangutica and tobacco increased after 40 °C treatment, although two calli exhibited a difference in the degree and timing of response to heat stress. When G6PDH was partially inhibited by glucosamine pretreatment, the antioxidant enzyme activities and thermotolerance in both calli significantly decreased. Simultaneously, the heat-induced H2O2 content and the plasma membrane NADPH oxidase activity were also reduced. Application of H2O2 increased the activity of G6PDH and antioxidant enzymes in both calli. Diphenylene iodonium, a NADPH oxidase inhibitor, counteracted heatinduced H2O2 accumulation and reduced the heat-induced activity of G6PDH and antioxidant enzymes. Moreover, exogenous H2O2 was effective in restoring the activity of G6PDH and antioxidant enzymes after glucosamine pretreatment. Western blot analysis showed that G6PDH gene expression in both calli was also stimulated by heat and H2O2, and blocked by DPI and glucosamine under heat stress. Taken together, under heat stress G6PDH promoted H2O2 accumulation via NADPH oxidase and the elevated H2O2 was involved in regulating the activity of antioxidant enzymes, which in turn facilitate to maintain the steady-state H2O2 level and protect plants from the oxidative damage.  相似文献   

6.
A derivative strain of Escherichia coli MG1655 for d-lactate production was constructed by deleting the pflB, adhE and frdA genes; this strain was designated “CL3.” Results show that the CL3 strain grew 44% slower than its parental strain under nonaerated (fermentative) conditions due to the inactivation of the main acetyl-CoA production pathway. In contrast to E. coli B and W3110 pflB derivatives, we found that the MG1655 pflB derivative is able to grow in mineral media with glucose as the sole carbon source under fermentative conditions. The glycolytic flux was 2.8-fold higher in CL3 when compared to the wild-type strain, and lactate yield on glucose was 95%. Although a low cell mass formed under fermentative conditions with this strain (1.2 g/L), the volumetric productivity of CL3 was 1.31 g/L h. In comparison with the parental strain, CL3 has a 22% lower ATP/ADP ratio. In contrast to wild-type E. coli, the ATP yield from glucose to lactate is 2 ATP/glucose, so CL3 has to improve its glycolytic flux in order to fulfill its ATP needs in order to grow. The aceF deletion in strains MG1655 and CL3 indicates that the pyruvate dehydrogenase (PDH) complex is functional under glucose-fermentative conditions. These results suggest that the pyruvate to acetyl-CoA flux in CL3 is dependent on PDH activity and that the decrease in the ATP/ADP ratio causes an increase in the flux of glucose to lactate.  相似文献   

7.
Escherichia coli, which lacks cytoplasmic superoxide dismutases, exhibits various phenotypic deficits if grown aerobically. Here we report that sodAsodB E. coli cannot use glycerol under aerobic conditions. The reason is low activity of glycerol kinase (GK), the rate-limiting enzyme in glycerol metabolism. Superoxide does not inactivate GK, but makes it susceptible to inactivation by a heat-labile factor present in the cell-free extracts. This factor seems to be part of a proteolytic system, which recognizes and degrades oxidatively modified proteins.  相似文献   

8.
Y. Liu  Q. Wan  R. Wu  X. Wang  H. Wang  Z. Wang  C. Shi  Y. Bi 《Biologia Plantarum》2012,56(2):313-320
The role of hydrogen peroxide in the regulation of glucose-6-phosphate dehydrogenase (G6PDH) activity in the red kidney bean (Phaseolus vulgaris L.) roots under salt stress (100 mM NaCl) was investigated. Salt stress caused the increase of the activities of G6PDH and antioxidative enzymes including ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), as well as H2O2 production. The application of H2O2 (1 mM) also enhanced the activities of G6PDH as well as antioxidative enzymes. In the presence of exogenous CAT, H2O2 content was decreased, and the enhanced activities of G6PDH and antioxidative enzymes induced by NaCl or by exogenous H2O2 were also abolished, suggesting that the enhancement of the above enzyme activities under salt stress was a result of the increased endogenous H2O2 levels. Further results showed that the effects of NaCl and H2O2 on the activities of antioxidative enzymes were diminished by Na3PO4 (a G6PDH inhibitor), suggesting G6PDH activity is required in enhancing the activities of antioxidative enzymes. The enhanced membrane leakage, lipid peroxidation, H2O2 and O2 — contents, G6PDH and antioxidative enzyme activities under salt stress were all recovered to control level when the red kidney bean seedlings treated with 100 mM NaCl for 6 d were transferred to the control conditions for 8 d.  相似文献   

9.
Ralstonia eutropha H16 is an H2‐oxidizing, facultative chemolithoautotroph. Using 2‐DE in conjunction with peptide mass spectrometry we have cataloged the soluble proteins of this bacterium during growth on different substrates: (i) H2 and CO2, (ii) succinate and (iii) glycerol. The first and second conditions represent purely lithoautotrophic and purely organoheterotrophic nutrition, respectively. The third growth regime permits formation of the H2‐oxidizing and CO2‐fixing systems concomitant to utilization of an organic substrate, thus enabling mixotrophic growth. The latter type of nutrition is probably the relevant one with respect to the situation faced by the organism in its natural habitats, i.e. soil and mud. Aside from the hydrogenase and Calvin‐cycle enzymes, the protein inventories of the H2‐CO2‐ and succinate‐grown cells did not reveal major qualitative differences. The protein complement of the glycerol‐grown cells resembled that of the lithoautotrophic cells. Phosphoenolpyruvate (PEP) carboxykinase was present under all three growth conditions, whereas PEP carboxylase was not detectable, supporting earlier findings that PEP carboxykinase is alone responsible for the anaplerotic production of oxaloacetate from PEP. The elevated levels of oxidative stress proteins in the glycerol‐grown cells point to a significant challenge by ROS under these conditions. The results reported here are in agreement with earlier physiological and enzymological studies indicating that R. eutropha H16 has a heterotrophic core metabolism onto which the functions of lithoautotrophy have been grafted.  相似文献   

10.
Glycerol has become an attractive substrate for bio-based production processes. However, Escherichia coli, an established production organism in the biotech industry, is not able to grow on glycerol under strictly anaerobic conditions in defined minimal medium due to redox imbalance. Despite extensive research efforts aiming to overcome these limitations, anaerobic growth of wild-type E. coli on glycerol always required either the addition of electron acceptors for anaerobic respiration (e.g. fumarate) or the supplementation with complex and relatively expensive additives (tryptone or yeast extract). In the present work, driven by model-based calculations, we propose and validate a novel and simple strategy to enable fermentative growth of E. coli on glycerol in defined minimal medium. We show that redox balance could be achieved by uptake of small amounts of acetate with subsequent reduction to ethanol via acetyl-CoA. Using a directed laboratory evolution approach, we were able to confirm this hypothesis and to generate an E. coli strain that shows, under anaerobic conditions with glycerol as the main substrate and acetate as co-substrate, robust growth (μ = 0.06 h−1), a high specific glycerol uptake rate (10.2 mmol/gDW/h) and an ethanol yield close to the theoretical maximum (0.92 mol per mol glycerol). Using further stoichiometric calculations, we also clarify why complex additives such as tryptone used in previous studies enable E. coli to achieve redox balance. Our results provide new biological insights regarding the fermentative metabolism of E. coli and offer new perspectives for sustainable production processes based on glycerol.  相似文献   

11.
Glycerol and glucose fermentation redox routes by Escherichia coli and their regulation by oxidizing and reducing reagents were investigated at different pHs. Cell growth was followed by decrease of pH and redox potential (E h ). During glycerol utilization at pH 7.5 ?pH, the difference between initial and end pH, was lower compared with glucose fermentation. After 8 h growth, during glycerol utilization E h dropped down to negative values (?150 mV) but during glucose fermentation it was positive (+50 mV). In case of glycerol H2 was evolved at the middle log phase while during glucose fermentation H2 was produced during early log phase. Furthermore, upon glycerol utilization, oxidizer potassium ferricyanide (1 mM) inhibited both cell growth and H2 formation. Reducing reagents dl-dithiothreitol (3 mM) and dithionite (1 mM) inhibited growth but stimulated H2 production. The findings point out the importance of reductive conditions for glycerol fermentation and H2 production by E. coli.  相似文献   

12.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
Cellular redox homeostasis is essential for plant growth, development as well as for the resistance to biotic and abiotic stresses, which is governed by the complex network of prooxidant and antioxidant systems. Recently, new evidence has been published that NADPH, produced by glucose-6-phosephate dehydrogenase enzyme (G6PDH), not only acted as the reducing potential for the output of reduced glutathione (GSH), but was involved in the activity of plasma membrane (PM) NADPH oxidase under salt stress, which resulted in hydrogen peroxide (H2O2) accumulation. H2O2 acts as a signal in regulating G6PDH activity and expression, and the activities of the enzymes in the glutathione cycle as well, through which the ability of GSH regeneration was increased under salt stress. Thus, G6PDH plays a critical role in maintaining cellular GSH levels under long-term salt stress. In this addendum, a hypothetical model for the roles of G6PDH in modulating the intracellular redox homeostasis under salt stress is presented.Key words: glucose-6-phosphate dehydrogenase, hydrogen peroxide, reduced glutathione, redox homeostasis, salt stressEnvironmental stresses inevitably induce the production of reactive oxygen species (ROS).1 Reduced glutathione (GSH) is a key substance in the network of antioxidants that include ascorbate, glutathione, α-tocopherol and a serial of antioxidant enzymes,2 which metabolizes H2O2 mainly via the ascorbate-glutathione cycle, the most important detoxifying system in plants.3 Thus, the regulatory ability to maintain the cellular GSH balance is crucial to confer the resistance to oxidative stress in plants. However, to our knowledge, the regulatory mechanism on the intracellular GSH-pool equilibrium under environmental stresses has been largely unknown in plants.A main source of GSH is regenerated from its oxidative form (GSSG) via glutathione cycling, which uses NADPH as the reductant.4 G6PDH is the key enzyme of pentose phosphate pathway that is responsible for the generation of NADPH.5 G6PDH has been shown to play a protective role against ROS in human and animal cells,6,7 and the enhanced expression of G6PDH could enhance the GSH levels and the ability of resistance to oxidative stress.5,8 In plants, it has been reported that oxidative stress induced by the elicitor stimulated G6PDH activity in tobacco cells,9,10 and the GSH-biosynthesis inhibitor or GSH precursor could increase or suppressed G6PDH activity, respectively.10 Interestingly, after G6PDH activity was inhibited, not only GSH levels dramatically decreased, but the elicitor-induced H2O2 accumulation was also completely counteracted.9,10 Thus, the functions of G6PDH under oxidative stress seem to be involved in these two contradictory courses in cells: the regeneration of GSH as well as H2O2 accumulation. The role of G6PDH under environmental stresses remained limited to clarify this, so we studied the G6PDH functions with a series of inhibitor or donor of GSH, H2O2 and G6PDH in reed calli under salt stress. Our recent studied clearly demonstrated that G6PDH activity was also simultaneously involved in intracellular GSH maintenance and H2O2 accumulation in salt stress. Further studies revealed that a plasma membrane (PM) NADPH oxidase, using NADPH as substrate mainly produced by G6PDH, was mainly responsible for the generation of H2O2. And H2O2, produced under salt stress, induced the increased G6PDH activity and the enzymes of glutathione cycle, which concomitantly resulted in an increased GSH contents. Foyer and Noctor (2005) suggested that the cellular “oxidative signaling” was made possibly by homeostatic regulation by antioxidant redox buffer.11 Based on these, it can be speculated that G6PDH might play an important role in maintaining the cellular redox signals under salt stress in plants.Our recent work provides a new insight into G6PDH functions under environmental stresses in plants. Growing evidences suggest that PM NADPH oxidase is responsible for H2O2 accumulation under stresses,12,13 and H2O2 is involved in various signaling pathways in plants, such as defense gene expression, stomatal closure, root growth, programmed cell death (PCD) and so on.11 In addition, GSH, as a key antioxidant, also influences gene expression associated with biotic and abiotic stress responses to maximum defense.2 Recent study also reported that G6PDH was involved in NR-dependent NO production, and thus played a pivotal role in establishing tolerance of red kidney bean roots to salt stress.14 Therefore, the research work is required to further clarify the regulatory mechanism underlying the roles of G6PDH in the cellular redox homeostasis as well as the related signals under environmental stresses in plants.Based on the results obtained so far, a model for G6PDH functions under salt stress is proposed (Fig. 1). In our model, the increased G6PDH activity is tightly correlated with GSH maintenance and H2O2 accumulation through PM NADPH oxidase under salt stress in plants. Under salt stress, H2O2 activities the activities of G6PDH and the enzymes in glutathione recycle, which finally result in the enhanced glutathione cycling rate and thus the increased GSH levels. This enhanced antioxidant ability can facilitate to maintain a steady-state level of H2O2. Eventually, the properly intracellular redox state is established under salt stress and forms a metabolic interface for signals. Thus, we suggest that G6PDH plays a crucial role in establishing this cellular redox homeostasis under salt stress.Open in a separate windowFigure 1Hypothetical model for the roles of G6PDH under salt stress. Under salt stress, G6PDH activity is involved in both GSH maintenance and H2O2 accumulation through PM NADPH oxidase. H2O2, as a signal, increases the activities of G6PDH, glutathione (GR) and glutathione peroxidase (GPX), which finally enhance glutathione cycle rate and result in the increased GSH levels. This enhanced antioxidant ability could facilitate to keep H2O2 in a steady state for signal in salt stress.  相似文献   

14.
Escherichia coli can perform two modes of formate metabolism. Under respiratory conditions, two periplasmically-located formate dehydrogenase isoenzymes couple formate oxidation to the generation of a transmembrane electrochemical gradient; and under fermentative conditions a third cytoplasmic isoenzyme is involved in the disproportionation of formate to CO2 and H2. The respiratory formate dehydrogenases are redox enzymes that comprise three subunits: a molybdenum cofactor- and FeS cluster-containing catalytic subunit; an electron-transferring ferredoxin; and a membrane-integral cytochrome b. The catalytic subunit and its ferredoxin partner are targeted to the periplasm as a complex by the twin-arginine transport (Tat) pathway. Biosynthesis of these enzymes is under control of an accessory protein termed FdhE. In this study, it is shown that E. coli FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. Bacterial two-hybrid analysis suggests the homodimer form of FdhE is stabilized by anaerobiosis. Site-directed mutagenesis shows that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in iron ligation.  相似文献   

15.

Key message

Two soybean cultivars showed markedly different drought tolerance. G6PDH plays a central role in the process of H 2 O 2 regulated GR, DHAR, and MDHAR activities to maintain GSH and Asc levels.

Abstract

Glucose-6-phosphate dehydrogenase (G6PDH) plays a pivotal role in plant resistance to environmental stresses. In this study, we investigated the role of G6PDH in modulating redox homeostasis under drought stress induced by polyethylene glycol 6000 (PEG6000) in two soybean cultivars JINDOU21 (JD-21) and WDD00172 (WDD-172). The G6PDH activity markedly increased and reached a maximum at 96 h in JD-21 and 72 h in WDD-172 during PEG6000 treatments, respectively. Glucosamine (Glucm, a G6PDH inhibitor) obviously inhibited G6PDH activity in both soybeans under PEG6000 treatments. After PEG6000 treatment, JD-21 showed higher tolerance than WDD-172 not only in higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), but also in higher content of glutathione (GSH) and ascorbate (Asc). And we found that hydrogen peroxide (H2O2) regulated the cell length in root elongation zone. Diphenylene iodonium (DPI, a plasma membrane NADPH oxidase inhibitor) counteracted the PEG6000-induced H2O2 accumulation and decreased the activities of GR, DHAR, and MDHAR as well as GSH and Asc content. Furthermore, exogenous application of H2O2 increased the GR, DHAR, and MDHAR activities that were decreased by Glucm under drought stress. Western blot analysis showed that the G6PDH expression was stimulated by PEG6000 and buthionine sulfoximine (BSO, glutathione biosynthesis inhibitor), and blocked by Glucm, DPI and N-acetyl-l-cysteine (NAC, GSH precursor) in both cultivars. Taken together, our evidence indicates that G6PDH plays a central role in the process of H2O2 regulated GR, DHAR, and MDHAR activities to maintain GSH and Asc levels.  相似文献   

16.
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2–3% of the sugar fermented is converted to glycerol. Replacing the NAD+-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD+ by transforming a double mutant (gpd1gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD+ regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.  相似文献   

17.
Availability, low prices, and a high degree of reduction make glycerol an ideal feedstock to produce reduced chemicals and fuels via anaerobic fermentation. Although glycerol metabolism in Escherichia coli had been thought to be restricted to respiratory conditions, we report here the utilization of this carbon source in the absence of electron acceptors. Cells grew fermentatively on glycerol and exhibited exponential growth at a maximum specific growth rate of 0.040 ± 0.003 h−1. The fermentative nature of glycerol metabolism was demonstrated through studies in which cell growth and glycerol utilization were observed despite blocking several respiratory processes. The incorporation of glycerol in cellular biomass was also investigated via nuclear magnetic resonance analysis of cultures in which either 50% U-13C-labeled or 100% unlabeled glycerol was used. These studies demonstrated that about 20% of the carbon incorporated into the protein fraction of biomass originated from glycerol. The use of U-13C-labeled glycerol also allowed the unambiguous identification of ethanol and succinic, acetic, and formic acids as the products of glycerol fermentation. The synthesis of ethanol was identified as a metabolic determinant of glycerol fermentation; this pathway fulfills energy requirements by generating, in a redox-balanced manner, 1 mol of ATP per mol of glycerol converted to ethanol. A fermentation balance analysis revealed an excellent closure of both carbon (~95%) and redox (~96%) balances. On the other hand, cultivation conditions that prevent H2 accumulation were shown to be an environmental determinant of glycerol fermentation. The negative effect of H2 is related to its metabolic recycling, which in turn generates an unfavorable internal redox state. The implications of our findings for the production of reduced chemicals and fuels were illustrated by coproducing ethanol plus formic acid and ethanol plus hydrogen from glycerol at yields approaching their theoretical maximum.  相似文献   

18.
Glycerol is an important osmotically compatible solute in Dunaliella. Glycerol-3-phosphate dehydrogenase (G3PDH) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. Generally, the glycerol-DHAP cycle pathway, which is driven by G3PDH, is considered as the rate-limiting enzyme to regulate the glycerol level under osmotic shocks. Considering the peculiarity in osmoregulation, the cDNA of a NAD+-dependent G3PDH was isolated from D. salina using RACE and RT-PCR approaches in this study. Results indicated that the length of the cDNA sequence of G3PDH was 2,100 bp encoding a 699 amino acid deduced polypeptide whose computational molecular weight was 76.6 kDa. Conserved domain analysis revealed that the G3PDH protein has two independent functional domains, SerB and G3PDH domains. It was predicted that the G3PDH was a nonsecretory protein and may be located in the chloroplast of D. salina. Phylogenetic analysis demonstrated that the D. salina G3PDH had a closer relationship with the G3PDHs from the Dunaliella genus than with those from other species. In addition, the cDNA was subsequently subcloned in the pET-32a(+) vector and was transformed into E. coli strain BL21 (DE3), a expression protein with 100 kDa was identified, which was consistent with the theoretical value.  相似文献   

19.
Methanol and the O-methyl group of vanillate did not support the growth of Clostridium formicoaceticum in defined medium under CO2-limited conditions; however, they were growth supportive when fumarate was provided concomitantly. Fumarate alone was not growth supportive under these conditions. Fumarate reduction (dissimilation) to succinate was the predominant electron-accepting, energy-conserving process for methanol-derived reductant under CO2-limited conditions. However, when both reductant sinks, i.e., fumarate and CO2, were available, reductant was redirected towards CO2 in defined medium. In contrast, in undefined medium with both reductant sinks available, C. formicoaceticum simultaneously engaged fumarate dismutation and the concomitant usage of CO2 and fumarate as reductant sinks. With Clostridium aceticum, fumarate also substituted for CO2, and H2 became growth supportive under CO2-limited conditions. Fumarate dissimilation was the predominant electron-accepting process under CO2-limited conditions; however, when both reductant sinks were available, H2-derived reductant was routed towards CO2, indicating that acetogenesis was the preferred electron-accepting process when reductant flow originated from H2. Collectively, these findings indicate that fumarate dissimilation, not dismutation, is selectively used under certain conditions and that such usage of fumarate is subject to complex regulation.  相似文献   

20.
Summary Before the requirements for lipid nutrilites had been recognized, the anaerobic cultivation of yeast during an unlimited number of generations always failed. In an attempt to explain this situation, F. Windisch et al. (1960a, 1960b) supposed that fermentative dissimilation is unable to provide energy for growth. In the present study a yeast, Saccharomyces rosei, is discussed in which the hereditary loss of the respiratory system becomes lethal after a few generations. As this might be an example of an organism in which fermentative dissimilation, although present, cannot replace respiration, it was investigated whether and to what extent fermentation can provide energy for growth in a normal strain of this species. It was found, with the aid of steady state continuous cultures, that under conditions of very limited oxygen supply, S. rosei can synthesize at least 98% of the total amount of newly forme living matter with the aid of energy obtained from fermentative dissimilation, irrespective of the number of generations. Thus, the fermentative dissimilation should in principle be sufficient, after the disappearance of the respiratory dissimilation, to provide energy for growth in this species. The lethality of respiratory deficiency observed in this species cannot be explained by assuming that fermentative dissimilation per se is unable to provide energy for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号