首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanophages encode host-derived genes that may increase their fitness. We examined the relative abundance of 18 host-derived cyanophages genes in metagenomes and viromes along depth profiles from the Eastern Tropical North Pacific Oxygen Deficient Zone (ETNP ODZ) where Prochlorococcus dominates a secondary chlorophyll maximum within the ODZ. Cyanophages at the oxic primary chlorophyll maximum encoded genes related to light and phosphate stress (psbA, psbD and pstS in T4-like and psbA in T7-like), but the proportion of cyanophage with these genes decreased with depth. The proportion of cyanophage with purine biosynthesis genes increased with depth in T4-like, but not T7-like cyanophages. No additional host-derived genes were found in deep T7-like cyanophages, suggesting that T4-like and T7-like cyanophages have different host-derived gene acquisition strategies, possibly linked to their different genome packaging mechanisms. In contrast to the ETNP, in the oxic North Atlantic T4-like cyanophages encoded psbA and pstS throughout the euphotic zone. Differences in pstS between the ETNP and the North Atlantic stations were consistent with differences in phosphate concentrations in those regimes. We suggest that the low proportion of cyanophage with psbA within the ODZ reflects the stably stratified low-light conditions occupied by their hosts, a Prochlorococcus ecotype endemic to ODZs.  相似文献   

2.
Abundant proteorhodopsin genes in the North Atlantic Ocean   总被引:5,自引:0,他引:5  
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique , a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 ( P. ubique and other SAR11 Alphaproteobacteria ), BACRED17H8 ( Alphaproteobacteria ), HOT2C01 ( Alphaproteobacteria ) and an uncultured subgroup of the Flavobacteria . Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.  相似文献   

3.
The ocean is a net source of N2O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N2O via microbial N2O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N2O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O2 tolerance, and community composition of N2O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N2O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N2O cycling. Microbes from the oxic layer consume N2O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N2O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O2 and N2O gradients right above the ODZ is a previously ignored potential gatekeeper of N2O and should be accounted for in the marine N2O budget.Subject terms: Water microbiology, Biogeochemistry, Microbial ecology  相似文献   

4.
The results of long-term studies of the spatial distribution, size composition, and spawning intensity of the Pacific saury Cololabis saira in open waters of the North Pacific Ocean and the northeastern part of the Pacific Ocean off the west coast of North America are presented. In the open waters of the Pacific Ocean, saury forms aggregations early in summer; intraseasonal changes in their distribution pattern have been identified. Migrations of Pacific saury stocks in the northeastern part of the Pacific Ocean were considered, and assumptions about their causes were made. The differences in the size composition of Pacific saury in different parts of the range are associated with the peculiarities of occurrence of favorable conditions for the formation of aggregations. Intensive spawning of Pacific saury in the northeastern part of the Pacific Ocean is observed in winter and spring, and that in open waters is observed in summer. The distribution of the early progeny of Pacific saury is associated with the systems of currents; its findings in the extreme northern regions in the 1980s are explained.  相似文献   

5.
Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi. While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3,600 m in the Atlantic Ocean and to 4,000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (±5.7%) of all DNA-containing bacterioplankton between 500 and 4,000 m.  相似文献   

6.
We present data on the genetic diversity and phylogenetic affinities of N2-fixing unicellular cyanobacteria in the plankton of the tropical North Atlantic Ocean. Our dinitrogenase gene (nifH) sequences grouped together with a group of cyanobacteria from the subtropical North Pacific; another subtropical North Pacific group was only distantly related. Most of the 16S ribosomal DNA sequences from our tropical North Atlantic samples were closely allied with sequences from a symbiont of the diatom Climacodium frauenfeldianum. These findings suggest a complex pattern of evolutionary and ecological divergence among unicellular cyanobacteria within and between ocean basins.  相似文献   

7.
Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi: While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3600 m in the Atlantic Ocean and to 4000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (+/-5.7%) of all DNA-containing bacterioplankton between 500 and 4000 m.  相似文献   

8.
Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next‐generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon‐based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon‐enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands.  相似文献   

9.
Relatively little is known about fish species interactions in offshore areas of the world’s oceans because adequate experimental controls are typically unavailable in such vast areas. However, pink salmon (Oncorhynchus gorbuscha) are numerous and have an alternating-year pattern of abundance that provides a natural experimental control to test for interspecific competition in the North Pacific Ocean and Bering Sea. Since a number of studies have recently examined pink salmon interactions with other salmon, we reviewed them in an effort to describe patterns of interaction over broad regions of the ocean. Research consistently indicated that pink salmon significantly altered prey abundance of other salmon species (e.g., zooplankton, squid), leading to altered diet, reduced total prey consumption and growth, delayed maturation, and reduced survival, depending on species and locale. Reduced survival was observed in chum salmon (O. keta) and Chinook salmon (O. tshawytscha) originating from Puget Sound and in Bristol Bay sockeye salmon (O. nerka). Growth of pink salmon was not measurably affected by other salmon species, but their growth was sometimes inversely related to their own abundance. In all marine studies, pink salmon affected other species through exploitation of prey resources rather than interference. Interspecific competition was observed in nearshore and offshore waters of the North Pacific Ocean and Bering Sea, and one study documented competition between species originating from different continents. Climate change had variable effects on competition. In the North Pacific Ocean, competition was observed before and after the ocean regime shift in 1977 that significantly altered abundances of many marine species, whereas a study in the Pacific Northwest reported a shift from predation- to competition-based mortality in response to the 1982/1983 El Nino. Key traits of pink salmon that influenced competition with other salmonids included great abundance, high consumption rates and rapid growth, degree of diet overlap or consumption of lower trophic level prey, and early migration timing into the ocean. The consistent pattern of findings from multiple regions of the ocean provides evidence that interspecific competition can significantly influence salmon population dynamics and that pink salmon may be the dominant competitor among salmon in marine waters.  相似文献   

10.
Aerobic anoxygenic phototrophic bacteria (AAPB) are an important bacterial group with capability of harvesting light energy, and appear to have a particular role in the ocean's carbon cycling. Yet the significance of AAPB relative to total bacteria (AAPB%) in different marine regimes are still controversial, and variation trend of genetic diversity of AAPB along environmental gradients remains unclear. Here we present the first comprehensive observation of the global distribution of AAPB in the Pacific, Atlantic and Indian oceans, revealing a general pattern of high abundance of AAPB and AAPB% in coastal waters than oceanic waters. The Indian Ocean contained relatively high AAPB% compared with the other two oceans, corresponding to the high primary production in this region. Both abundance of AAPB and AAPB% were positively correlated with the concentration of chlorophyll a, while the diversity of AAPB decreased with increasing chlorophyll a values. Our results suggest that AAPB abundance and diversity follow opposite trends from oligotrophic to eutrophic regimes in the ocean.  相似文献   

11.
The diversity and abundance of glycosyl hydrolase family 5 (GH5) were studied in the North Atlantic Ocean. This family was chosen because of the large number of available sequences from cultured bacteria, the variety of substrates it targets, and the high number of similar sequences in the Sargasso Sea environmental genome database. Three clone libraries of a GH5 subcluster were constructed from the Mid-Atlantic Bight and the eastern and western North Atlantic Ocean. The two North Atlantic Ocean libraries did not differ from each other but both were significantly less diverse than the Mid-Atlantic Bight library. The abundance of GH5 genes estimated by quantitative PCR was positively correlated with chlorophyll concentrations in the eastern part of a transect from Fort Pierce, Florida, to the Azores and in a depth profile, suggesting that the supply of labile organic material selects for GH5-bearing bacteria in these waters. However, the data suggest that only <1% of all bacteria harbor the GH5 subcluster. These and other data suggest that the hydrolysis of polysaccharides requires complicated multi-enzyme systems.  相似文献   

12.
Ostreococcus is a marine picophytoeukaryote for which culture studies indicate there are ‘high-light'' and ‘low-light'' adapted ecotypes. Representatives of these ecotypes fall within two to three 18S ribosomal DNA (rDNA) clades for the former and one for the latter. However, clade distributions and relationships to this form of niche partitioning are unknown in nature. We developed two quantitative PCR primer-probe sets and enumerated the proposed ecotypes in the Pacific Ocean as well as the subtropical and tropical North Atlantic. Statistical differences in factors such as salinity, temperature and NO3 indicated the ecophysiological parameters behind clade distributions are more complex than irradiance alone. Clade OII, containing the putatively low-light adapted strains, was detected at warm oligotrophic sites. In contrast, Clade OI, containing high-light adapted strains, was present in cooler mesotrophic and coastal waters. Maximal OI abundance (19 555±37 18S rDNA copies per ml) was detected in mesotrophic waters at 40 m depth, approaching the nutricline. OII was often more abundant at the deep chlorophyll maximum, when nutrient concentrations were significantly higher than at the surface (stratified euphotic zone waters). However, in mixed euphotic-zone water columns, relatively high numbers (for example, 891±107 18S rDNA copies per ml, Sargasso Sea, springtime) were detected at the surface. Both Clades OI and OII were found at multiple euphotic zone depths, but co-occurrence at the same geographical location appeared rare and was detected only in continental slope waters. In situ growth rate estimates using these primer-probes and better comprehension of physiology will enhance ecological understanding of Ostreococcus Clades OII and OI which appear to be oceanic and coastal clades, respectively.  相似文献   

13.
Abstract The effect of dissolved organic matter (DOM) and temperature on bacterial production was examined in the equatorial Pacific Ocean. Addition of glucose, glucose plus ammonium, or free amino acids stimulated bacterial production ([3H]thymidine incorporation), whereas changes in bacterial abundance were either negligible or much less than changes in bacterial production. The average bacterial growth rate also greatly increased following DOM additions, whereas in contrast, addition of ammonium alone never affected production, bacterial abundance, or growth rates. Since the large glucose effect was not observed in previous studies of cold oceanic waters, several experiments were conducted to examine DOM-temperature interactions. These experiments suggest that bacteria respond more quickly and to a greater extent to DOM additions at higher temperatures, which may explain apparently conflicting results from previous studies. We also examined how temperate affects the kinetic parameters of sugar uptake. Maximum uptake rates (Vmax) of glucose and mannose increased with temperature (Q10= 2.4), although the half-saturation constant (Km) was unaffected; Km+ S was roughly equal to glucose concentrations (S) measured by a high pressure liquid chromographic technique. Bacterial production and growth rates appear to be limited by DOM in the equatorial Pacific, and thus bacterial production follows primary production over large spatial and temporal scales in this oceanic regime, as has been observed in other aquatic systems. Although temperature may not limit bacterial growth rates in the equatorial Pacific and similar warm waters, it could still affect how bacteria respond to changes in DOM supply and help set steady-state DOM concentrations. Received: 26 July 1995; Revised: 19 January 1996  相似文献   

14.
We have used satellite colour data to classify ocean environments for monitoring interannual changes in the ocean. The unsupervised classification method is based on our observation that the frequency distributions of Coastal Zone Color Scanner (CZCS) annual pigment means and standard deviations are nonuniform and contain distinct clusters. The frequency distributions are used to objectively determine ocean areas with similar pigment statistical characteristics. A major separation between high variance, high pigment and lower variance, lower pigment waters is observed in terms of global ocean area. The ocean areas determined with our method reflect different bio‐logical responses to variations in ocean physical dynamics. Pigment means and variances around the Joint Global Ocean Flux Study (JGOFS) Time Series stations are used as fiducial characteristics. Hawaii Ocean Time‐series (HOT) station is associated with the low‐variance portion of the global annual pigment distribution characteristic of the central gyres, but shows slightly higher mean and variance than the minima in the central Pacific gyre. The Bermuda Atlantic Time Series (BATS) pigment associations comprise a transitional region between the gyres and high‐variance pigment areas, and circumscribe the HOT pigment associations. Together, these associations encompass 23% (HOT‐like) and 48% (BATS‐like) of the Northern Hemisphere open ocean. The Pacific regions delineated by the JGOFS station pigment‐based patterns are similar to distributions described historically for Pacific zooplankton communities. Interannual variation for the northern hemisphere gyre area is on the order of by 10% for the 11/78–10/81 period.  相似文献   

15.
A reverse-phase h.p.l.c. technique was used to estimate theconcentration of chlorophyll b in phytoplankton cultures, fecalpellets of Calanus pacificus, and suspended paniculate matterfrom the Central North Pacific, Oregon coastal waters, and DabobBay (a temperate fjord in Puget Sound, WA, USA). The purposewas to assess the distribution of this pigment in the euphoticzone and its effect on the fluorometnc estimation of phaeopigments.Analyses of natural waters confirm high chlorophyll b concentrations(median mass ratio of b:a > 0.3) at the depth of the chlorophylla maximum in tropical waters while values for temperate planktonare relatively low (median mass ratio of chl b:a = 0.05) andpatchy. Zooplankton fecal pellets showed a significant enrichmentin chlorophyll b, suggesting grazing as a mechanism to explainhigh concentrations of this pigment at the bottom of the euphoticzone. It is estimated that the presence of chlorophyll b couldcause an average overestimation of phaeopigment concentrationby the fluorometnc technique of 38% between 0 and 200 m in theCentral North Pacific. This effect is more pronounced at thelayer of chlorophyll b maximum (120–140 m). 1Present address: Marine Biology Research Division, A-002, ScrippsInstitution of Oceanography, La Jolla, CA 92093, USA  相似文献   

16.
Viruses play a key role in all marine ecosystems, and yet little is known of their distribution in Antarctic waters, especially in bathypelagic waters (>1000 m). In this study, the abundance and distribution of viruses and their potential hosts from the surface to the bottom of Prydz Bay, Antarctic, was investigated using flow cytometry. Viruses and autotrophs were abundant in nearshore and continental shelf waters, while heterotrophic bacteria and picoeukaryotes were abundant in offshore waters. Virus and bacteria abundances generally decreased with increasing depth but increased slightly just above the seafloor. Within the water column, maximum virus numbers coincided with the maximum values of chlorophyll a (when greater than 0.1 μg l?1), in the surface and subsurface (25 m). In the open ocean, however, virus abundance usually correlated with bacterial abundance at greater depths (50, 300 and 500 m) where the surface chlorophyll a concentration was lower than 0.1 μg l?1. Viral abundance was correlated with the host cell abundance, and this was different in different pelagic zones (bacteria and autotrophs (i.e., chlorophyll a concentration) in the epipelagic waters, picoeukaryotes and bacteria in mesopelagic waters and bacteria in bathypelagic waters). Principle component analysis and Pearson correlation analysis indicated that there was a close relationship between virus abundance and chlorophyll a, bacteria and nutrients (NO2 + NO3, phosphate and silicate), and picoeukaryote abundance was mainly correlated with water depth and salinity.  相似文献   

17.
The basking shark (Cetorhinus maximus) is found in temperate waters throughout the world's oceans, and has been subjected to extensive exploitation in some regions. However, little is known about its current abundance and genetic status. Here, we investigate the diversity of the mitochondrial DNA control region among samples from the western North Atlantic, eastern North Atlantic, Mediterranean Sea, Indian Ocean and western Pacific. We find just six haplotypes defined by five variable sites, a comparatively low genetic diversity of pi=0.0013 and no significant differentiation between ocean basins. We provide evidence for a bottleneck event within the Holocene, estimate an effective population size (Ne) that is low for a globally distributed species, and discuss the implications.  相似文献   

18.
Time series of satellite‐derived surface chlorophyll‐a concentration (Chl) in 1997–2009 were used to examine for trends in the timing of the annual phytoplankton bloom maximum. Significant trends towards earlier phytoplankton blooms were detected in about 11% of the area of the Arctic Ocean with valid Chl data, e.g. in the Hudson Bay, Foxe Basin, Baffin Sea, off the coasts of Greenland, in the Kara Sea and around Novaya Zemlya. These areas roughly coincide with areas where ice concentration has decreased in early summer (June), thus making the earlier blooms possible. In the selected areas, the annual phytoplankton bloom maximum has advanced by up to 50 days which may have consequences for the Arctic food chain and carbon cycling. Outside the Arctic, the annual Chl maximum has become earlier in boreal North Pacific but later in the North Atlantic.  相似文献   

19.
The abundance of aerobic anoxygenic phototrophic (AAP) bacteria, cyanobacteria, and heterotrophs was examined in the Mid-Atlantic Bight and the central North Pacific Gyre using infrared fluorescence microscopy coupled with image analysis and flow cytometry. AAP bacteria comprised 5% to 16% of total prokaryotes in the Atlantic Ocean but only 5% or less in the Pacific Ocean. In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than that of Prochlorococcus spp. and 10-fold higher than that of Synechococcus spp. In contrast, Prochlorococcus spp. outnumbered AAP bacteria 5- to 50-fold in the Pacific. In both oceans, subsurface abundance maxima occurred within the photic zone, and AAP bacteria were least abundant below the 1% light depth. The abundance of AAP bacteria rivaled some groups of strictly heterotrophic bacteria and was often higher than the abundance of known AAP bacterial genera (Erythrobacter and Roseobacter spp.). Concentrations of bacteriochlorophyll a (BChl a) were low ( approximately 1%) compared to those of chlorophyll a in the North Atlantic. Although the BChl a content of AAP bacteria per cell was typically 20- to 250-fold lower than the divinyl-chlorophyll a content of Prochlorococcus, the pigment content of AAP bacteria approached that of Prochlorococcus in shelf break water. Our results suggest that AAP bacteria can be quite abundant in some oceanic regimes and that their distribution in the water column is consistent with phototrophy.  相似文献   

20.
The phytoplankton species in the North Pacific central environmentare known to be distributed into two vertically distinct assemblagesduring most of the year. Key species are defined for each assemblage.The vertical distributions of these key species indicate thatthe increase in abundance of deep species closely parallelsthe increase in chlorophyll a at the top of the chlorophyllmaximum layer. The chlorophyll maximum is comprised of speciescharacteristic of the deep assemblage, with only insignificantnumbers of shallow species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号