共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
El Alaoui S Diez J Toribio F Gómez-Baena G Dufresne A García-Fernández JM 《Environmental microbiology》2003,5(5):412-423
The regulation of glutamine synthetase (EC 6.3.1.2) from Prochlorococcus was previously shown to exhibit unusual features: it is not upregulated by nitrogen starvation and it is not inactivated by darkness (El Alaoui et al. (2001) Appl Environ Microbiol 67: 2202-2207). These are probably caused by adaptations to oligotrophic environments, as confirmed in this work by the marked decrease in the enzymatic activity when cultures were subjected to iron or phosphorus starvation. In order to further understand the adaptive features of ammonium assimilation in this cyanobacterium, glutamine synthetase was purified from two Prochlorococcus strains: PCC 9511 (high-light adapted) and SS120 (low-light adapted). We obtained approximately 100-fold purified samples of glutamine synthetase electrophoretically homogeneous, with a yield of approximately 30%. The estimated molecular mass of the subunits was roughly the same for both strains: 48.3 kDa. The apparent Km constants for the biosynthetic activity were 0.30 mM for ammonium, 1.29 mM for glutamate and 1.35 mM for ATP; the optimum pH was 8.0. Optimal temperature was surprisingly high (55 degrees C). Phylogenetic analysis of glnA from three Prochlorococcus strains (MED4, MIT9313 and SS120) showed they group closely with marine Synechococcus isolates, in good agreement with other studies based on 16 S RNA sequences. All of our results suggest that the structure and kinetics of glutamine synthetase in Prochlorococcus have not been significantly modified during the evolution within the cyanobacterial radiation, in sharp contrast with its regulatory properties. 相似文献
3.
4.
Strangers in the archaeal world: osmostress‐responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus 下载免费PDF全文
Felix J. Elling Martin Könneke Nadine Stöveken Marco Pittelkow Ramona Riclea Jeroen S. Dickschat Johann Heider Erhard Bremer 《Environmental microbiology》2016,18(4):1227-1248
5.
6.
Tiffert Y Franz-Wachtel M Fladerer C Nordheim A Reuther J Wohlleben W Mast Y 《Applied microbiology and biotechnology》2011,89(4):1149-1159
GlnR is the global regulator of nitrogen assimilation in Streptomyces coelicolor M145 and other actinobacteria. Two-dimensional polyacrylamide gel electrophoresis analyses were performed to identify new
GlnR target genes by proteomic comparison of wild-type S. coelicolor M145 and a ΔglnR mutant. Fifty proteins were found to be differentially regulated between S. coelicolor M145 and the ΔglnR mutant. These spots were identified by nanoHPLC–ESI-MS/MS and classified according to their cellular role. Most of the identified
proteins are involved in amino acid biosynthesis and in carbon metabolism, demonstrating that the role of GlnR is not restricted
to nitrogen metabolism. Thus, GlnR is supposed to play an important role in the global metabolic control of S. coelicolor M145. 相似文献
7.
8.
9.
The degree to which planktonic microbes can exploit microscale resource patches will have considerable implications for oceanic trophodynamics and biogeochemical flux. However, to take advantage of nutrient patches in the ocean, swimming microbes must overcome the influences of physical forces including molecular diffusion and turbulent shear, which will limit the availability of patches and the ability of bacteria to locate them. Until recently, methodological limitations have precluded direct examinations of microbial behaviour within patchy habitats and realistic small-scale flow conditions. Hence, much of our current knowledge regarding microbial behaviour in the ocean has been procured from theoretical predictions. To obtain new information on microbial foraging behaviour in the ocean we have applied soft lithographic fabrication techniques to develop 2 microfluidic devices, which we have used to create (i) microscale nutrient patches with dimensions and diffusive characteristics relevant to oceanic processes and (ii) microscale vortices, with shear rates corresponding to those expected in the ocean. These microfluidic devices have permitted a first direct examination of microbial swimming and chemotactic behaviour within a heterogeneous and dynamic seascape. The combined use of epifluorescence and phase contrast microscopy allow direct examinations of the physical dimensions and diffusive characteristics of nutrient patches, while observing the population-level aggregative response, in addition to the swimming behaviour of individual microbes. These experiments have revealed that some species of phytoplankton, heterotrophic bacteria and phagotrophic protists are adept at locating and exploiting diffusing microscale resource patches within very short time frames. We have also shown that up to moderate shear rates, marine bacteria are able to fight the flow and swim through their environment at their own accord. However, beyond a threshold high shear level, bacteria are aligned in the shear flow and are less capable of swimming without disturbance from the flow. Microfluidics represents a novel and inexpensive approach for studying aquatic microbial ecology, and due to its suitability for accurately creating realistic flow fields and substrate gradients at the microscale, is ideally applicable to examinations of microbial behaviour at the smallest scales of interaction. We therefore suggest that microfluidics represents a valuable tool for obtaining a better understanding of the ecology of microorganisms in the ocean. 相似文献
10.
The tolerant mechanism of yeast to the combination of three inhibitors (furfural, phenol and acetic acid) was investigated using 2-DE combined with MALDI-TOF/TOF-MS. The stress response and detoxification related proteins (e.g., Ahp1p, Hsp26p) were expressed higher in the tolerant yeast than in the parental yeast. The expressions of most nitrogen metabolism related proteins (e.g. Gdh1p, Met1p) were higher in the parental yeast, indicating that the tolerant yeast decreases its nitrogen metabolism rate to reserve energy, and possesses high resistance to the stress of combined inhibitors. Furthermore, upon exposure to the inhibitors, the proteins related to protein folding, degradation and translation (e.g., Ssc1p, Ubp14p, Efb1p) were all significantly affected, and the oxidative stress related proteins (e.g., Ahp1p, Grx1p) were increased. Knockdown of genes related to the oxidative stress and unfolded protein response (Grx1, Gre2, Asc1) significantly decreased the tolerance of yeast to inhibitors, which further suggested that yeast responded to the inhibitors mainly by inducing unfolded protein response. This study reveals that increasing the detoxification and tolerating oxidative stress, and/or decreasing the nitrogen metabolism would be promising strategies in developing more tolerant strains to the multiple inhibitors in lignocellulose hydrolysates. 相似文献
11.
Bioenergetics and end-product regulation of Clostridium thermosaccharolyticum in response to nutrient limitation 总被引:1,自引:0,他引:1
Fermentation of xylose by Clostridium thermosaccharolyticum was studied in batch and continuous culture in which the limiting nutrient was either xylose, phosphate, or ammonia. Transient results obtained in continuous cultures with batch grown inoculum and progressively higher feed substrate concentrations exhibited ethanol selectivities (moles ethanol/moles other products) in excess of 11. The hypothesis that this high ethanol selectivity was a general response to mineral nutrient limitation was tested but could not be supported. Growth and substrate consumption were related by the equation q(s)(1 - Y(x) (c))G(ATP) = (mu/Y(ATP) (max)) + m, with q(s) the specific rate of xylose consumption (moles xylose/hour . g cells), Y(x) (c) the carbon based cell yield (g cell carbon/g substrate carbon), G(ATP) the ATP gain (moles ATP produces/mol substrate catabolized), mu the specific growth rate (1/h), Y(ATP) (max) the ATP-based cell yield (g cells/mol ATP), and m the maintenance coefficient (moles ATP/hour . g cells). Y(ATP) (max) was found to be 11.6 g cells/mol ATP, and m 9.3 mol ATP/hour . g cells for growth on defined medium. Different responses to nutrient limitation were observed depending on the mode of cultivation. Batch and immobilized cell continuous cultures decreased G(ATP) by initiating production of the secondary metabolites, propanediol, and in some cases, D-lactate; in addition, batch cultures increased the fractional allocation of ATP to maintenance and/or wastage. Nitrogen-limited continuous free-cell cultures maintained a constant cell yield, whereas phosphate-limited continuous free-cell cultures did not. In the case of phosphate limitation, the decreased ATP demand associated with the lowered cell yield was accompanied by an increased rate of ATP consumption for maintenance and/or wastage. Neither nitrogen or phosphorus-limited continuous free-cell cultures exhibited an altered G(ATP) in response to mineral nutrient limitation, and neither produced secondary metabolites. (c) 1993 John Wiley & Sons, Inc. 相似文献
12.
Bajhaiya Amit K. Dean Andrew P. Driver Thomas Trivedi Drupad K. Rattray Nicholas J. W. Allwood J. William Goodacre Royston Pittman Jon K. 《Metabolomics : Official journal of the Metabolomic Society》2016,12(1):1-14
Metabolomics - Microalgae produce metabolites that could be useful for applications in food, biofuel or fine chemical production. The identification and development of suitable strains require... 相似文献
13.
Andaluz S López-Millán AF De las Rivas J Aro EM Abadía J Abadía A 《Photosynthesis research》2006,89(2-3):141-155
The proteomic profile of thylakoid membranes and the changes induced in that proteome by iron deficiency have been studied by using thylakoid preparations from Beta vulgaris plants grown in hydroponics. Two different 2-D electrophoresis approaches have been used to study these proteomes: isoelectrical focusing followed by SDS PAGE (IEF-SDS PAGE) and blue-native polyacrylamide gel electrophoresis followed by SDS PAGE (BN-SDS PAGE). These techniques resolved approximately 110–140 and 40 polypeptides, respectively. Iron deficiency induced significant changes in the thylakoid sugar beet proteome profiles: the relative amounts of electron transfer protein complexes were reduced, whereas those of proteins participating in leaf carbon fixation-linked reactions were increased. A set of polypeptides, which includes several enzymes related to metabolism, was detected in thylakoid preparations from Fe-deficient Beta vulgaris leaves by using BN-SDS PAGE, suggesting that they may be associated with these thylakoids in vivo. The BN-SDS PAGE technique has been proven to be a better method than IEF-SDS PAGE to resolve highly hydrophobic integral membrane proteins from thylakoid preparations, allowing for the identification of complexes and determination of their polypeptidic components. 相似文献
14.
Michael Karydis 《Hydrobiologia》1981,85(2):137-143
The toxicity of crude oil in relation to nutrient limitation was studied in Skeletonema costatum cultures. The addition of 100 mg/l of crude oil, although slightly toxic for the algae grown in complete media, was eventually
lethal for the algae growing in phosphorus and nitrogen limited media, indicating the importance of those two nutrients for
the algal resistance to oil pollution problems. Less severe effects of crude oil were observed in the silicon limited media,
suggesting that the adsorptive properties of silica play an important role in the uptake and intracellular distribution of
hydrocarbons. Chl a and carbon uptake were found to be more sensitive parameters for assessing hydrocarbon toxicity than cell counting. 相似文献
15.
Bacillus thuringiensis (Bt) has been widely used for 50 years as a safe biopesticide for controlling agricultural and sanitary insect pests because of its insecticidal crystal proteins. In this study a proteomic approach was used to investigate the responses and survival strategies of Bt YBT-1520 under a long-term heat stress condition (42°C). Heat stress mainly influenced the characteristics of YBT-1520 on four aspects: (i) the abilities to synthesise insecticidal crystal proteins and other potential pathogenic factors were almost lost, (ii) cell adhesion and motility were also lost, (iii) cell did not sporulate, (iv) cell kept accumulating poly(3-hydroxybutyrate) (PHB). Proteomic analyses to the physiological changes of the strain revealed three strategies of YBT-1520 for survival under long-term heat stress. The first strategy is to up-regulate enzymes (BDH1, GuaB and PepA) for long-term heat stress tolerance. The second one is to down-regulate metabolic enzymes to reduce metabolic burden. The third strategy is to increase the synthesis and accumulation of PHB. Under heat stress condition, the bacterium adjusted its metabolism by up-/down-regulation and continuous accumulation of PHB. These strategies would help cells to gain more tolerance to heat stress. 相似文献
16.
Martínez-Fernández M Rodríguez-Piñeiro AM Oliveira E Páez de la Cadena M Rolán-Alvarez E 《Journal of proteome research》2008,7(11):4926-4934
The proteomic changes occurring during speciation are fundamental to understand this process, though they have been rarely addressed until present. Therefore, we compared the proteome of two ecotypes (RB and SU) of the marine snail Littorina saxatilis, a case of sympatric incomplete speciation, originated as a byproduct of adaptation to distinct habitats. Thus, the RB ecotype is able to resist stresses of desiccation and temperature on the upper shore, whereas the SU ecotype defies strong physical disturbances due to wave action. Qualitative analyses of 2-DE gels demonstrated 21 proteins differentially expressed (1.4% of the proteome, 1.2% after considering type-I errors), while quantitative changes accounted for differences in 22 spots (16% of the proteome, 11% after considering type-I errors). These results suggest that adaptative phenotypic plasticity, natural selection, or both maintain these ecotypes in sympatry. Among the proteins identified by MS, we found that fructose-bisphosphate aldolase and arginine kinase were up-regulated in the SU ecotype, suggesting an enhancement of the level of energy available as ATP, in order to withstand its wave-exposed habitat. 相似文献
17.
18.
19.