首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Massive DNA sequencing studies have expanded our insights and understanding of the ecological and functional characteristics of the gut microbiome. Advanced sequencing technologies allow us to understand the close association of the gut microbiome with human health and critical illnesses. In the future, analyses of the gut microbiome will provide key information associating with human individual health, which will help provide personalized health care for diseases. Numerous molecular biological analysis tools have been rapidly developed and employed for the gut microbiome researches; however, methodological differences among researchers lead to inconsistent data, limiting extensive share of data. It is therefore very essential to standardize the current methodologies and establish appropriate pipelines for human gut microbiome research. Herein, we review the methods and procedures currently available for studying the human gut microbiome, including fecal sample collection, metagenomic DNA extraction, massive DNA sequencing, and data analyses with bioinformatics. We believe that this review will contribute to the progress of gut microbiome research in the clinical and practical aspects of human health.  相似文献   

5.
  1. Download : Download high-res image (150KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
8.
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

9.
Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large‐scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture‐independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72% of the total assigned microbial abundance, single‐nucleotide variation clearly indicates the existence of sub‐populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies‐specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro‐inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host.  相似文献   

10.
11.
人体肠道共生着数以万亿计的微生物,肠道微生物在维持宿主正常生理功能中发挥重要作用,其成分和功能变化可导致严重的肠道和全身性疾病。以新一代测序技术和生物信息学分析为基础的元基因组学研究不仅极大地推动了对人类肠道微生物的整体认识,还加深了对肠道微生物代谢产物促进人类健康机理的理解,为肠道炎症、代谢性疾病和癌症等人类疾病的诊断与治疗提供了新思路。就肠道微生物元基因组学与肠道相关疾病的研究进展作一综述。  相似文献   

12.
13.
It is increasingly clear that the human gut microbiome has great medical importance, and researchers are beginning to investigate its basic biology and to appreciate the challenges that it presents to medical science. Several striking new empirical results in this area are perplexing within the standard conceptual framework of biomedicine, and this highlights the need for new perspectives from ecology and from dynamical systems theory. Here, we discuss recent results concerning sources of individual variation, temporal variation within individuals, long-term changes after transient perturbations and individualized responses to perturbation within the human gut microbiome.  相似文献   

14.
The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model‐guided framework to predict higher‐dimensional consortia from time‐resolved measurements of lower‐order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi‐species community dynamics, as opposed to higher‐order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history‐dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human‐associated intestinal species and illuminated design principles of microbial communities.  相似文献   

15.
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   

16.
肠道微生物与人体共生共存,是人体重要的“器官”,与人体健康和疾病密切相关。越来越多的研究开始关注肠道微生物在不同疾病中的作用,并发现在某些疾病的发生发展中,人体肠道微生物及其代谢产物是非常关键的一环。肠道微生物与衰老也息息相关。衰老是每个人都必须经历的过程,整体来看是健康的器官功能逐步退化的过程,在细胞层面上是细胞的衰老。本文主要分析了长寿人群肠道微生物的分布特征,并分析了与长寿密切相关的部分肠道微生物及其影响细胞衰老的机制。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号