首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone lysine acetylation has emerged as a key regulator of genome organization. However, with a few exceptions, the contribution of each acetylated lysine to cellular functions is not well understood because of the limited specificity of most histone acetyltransferases and histone deacetylases. Here we show that the Mst2 complex in Schizosaccharomyces pombe is a highly specific H3 lysine 14 (H3K14) acetyltransferase that functions together with Gcn5 to regulate global levels of H3K14 acetylation (H3K14ac). By analyzing the effect of H3K14ac loss through both enzymatic inactivation and histone mutations, we found that H3K14ac is critical for DNA damage checkpoint activation by directly regulating the compaction of chromatin and by recruiting chromatin remodeling protein complex RSC.  相似文献   

2.
Aspergillus flavus is a pathogenic fungus that produces carcinogenic aflatoxins, posing a great threat to crops, animals and humans. Lysine acetylation is one of the most important reversible post-translational modifications and plays a vital regulatory role in various cellular processes. However, current information on the extent and function of lysine acetylation and aflatoxin biosynthesis in A. flavus is limited. Here, a global acetylome analysis of A. flavus was performed by peptide pre-fractionation, pan-acetylation antibody enrichment and liquid chromatography–mass spectrometry. A total of 1313 high-confidence acetylation sites in 727 acetylated proteins were identified in A. flavus. These acetylation proteins are widely involved in glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle and aflatoxin biosynthesis. AflO (O-methyltransferase), a key enzyme in aflatoxin biosynthesis, was found to be acetylated at K241 and K384. Deletion of aflO not only impaired conidial and sclerotial developments, but also dramatically suppressed aflatoxin production and pathogenicity of A. flavus. Further site-specific mutations showed that lysine acetylation of AflO could also result in defects in development, aflatoxin production and pathogenicity, suggesting that acetylation plays a vital role in the regulation of the enzymatic activity of AflO in A. flavus. Our findings provide evidence for the involvement of lysine acetylation in various biological processes in A. flavus and facilitating in the elucidation of metabolic networks.  相似文献   

3.
4.
5.
The fluG gene is a member of a family of genes required for conidiation and sterigmatocystin production in Aspergillus nidulans. We examined the role of the Aspergillus flavus fluG orthologue in asexual development and aflatoxin biosynthesis. Deletion of fluG in A. flavus yielded strains with an approximately 3-fold reduction in conidiation but a 30-fold increase in sclerotial formation when grown on potato dextrose agar in the dark. The concurrent developmental changes suggest that A. flavus FluG exerts opposite effects on a mutual signaling pathway for both processes. The altered conidial development was in part attributable to delayed expression of brlA, a gene controlling conidiophore formation. Unlike the loss of sterigmatocystin production by A. nidulans fluG deletion strains, aflatoxin biosynthesis was not affected by the fluG deletion in A. flavus. In A. nidulans, FluG was recently found to be involved in the formation of dehydroaustinol, a component of a diffusible signal of conidiation. Coculturing experiments did not show a similar diffusible meroterpenoid secondary metabolite produced by A. flavus. These results suggest that the function of fluG and the signaling pathways related to conidiation are different in the two related aspergilli.  相似文献   

6.
The aflatoxin-producing fungi, Aspergillus flavus and A. parasiticus, form structures called sclerotia that allow for survival under adverse conditions. Deletion of the veA gene in A. flavus and A. parasiticus blocks production of aflatoxin as well as sclerotial formation. We used microarray technology to identify genes differentially expressed in wild-type veA and veA mutant strains that could be involved in aflatoxin production and sclerotial development in A. flavus. The DNA microarray analysis revealed 684 genes whose expression changed significantly over time; 136 of these were differentially expressed between the two strains including 27 genes that demonstrated a significant difference in expression both between strains and over time. A group of 115 genes showed greater expression in the wild-type than in the veA mutant strain. We identified a subgroup of veA-dependent genes that exhibited time-dependent expression profiles similar to those of known aflatoxin biosynthetic genes or that were candidates for involvement in sclerotial production in the wild type.  相似文献   

7.
8.
Nucleosome destabilization by histone variants and modifications has been implicated in the epigenetic regulation of gene expression, with the histone variant H2A.Z and acetylation of H3K56 (H3K56ac) being two examples. Here we find that deletion of SWR1, the major subunit of the SWR1 complex depositing H2A.Z into chromatin in exchange for H2A, promotes epigenetic white-opaque switching in Candida albicans. We demonstrate through nucleosome mapping that SWR1 is required for proper nucleosome positioning on the promoter of WOR1, the master regulator of switching, and that its effects differ in white and opaque cells. Furthermore, we find that H2A.Z is enriched adjacent to nucleosome-free regions at the WOR1 promoter in white cells, suggesting a role in the stabilization of a repressive chromatin state. Deletion of YNG2, a subunit of the NuA4 H4 histone acetyltransferase (HAT) that targets SWR1 activity through histone acetylation, produces a switching phenotype similar to that of swr1, and both may act downstream of the GlcNAc signaling pathway. We further uncovered a genetic interaction between swr1 and elevated H3K56ac with the discovery that the swr1 deletion mutant is highly sensitive to nicotinamide. Our results suggest that the interaction of H2A.Z and H3K56ac regulates epigenetic switching at the nucleosome level, as well as having global effects.  相似文献   

9.
10.
11.
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1.  相似文献   

12.
Mitogen-activated protein kinase (MAPK) cascades are highly conserved in eukaryotic cells and are known to play crucial roles in the regulation of various cellular processes. However, compared with kinase-mediated phosphorylation, dephosphorylation catalysed by phosphatases has not been well characterized in filamentous fungi. In this study, we identified five MAPK pathway-related phosphatases (Msg5, Yvh1, Ptp1, Ptp2 and Oca2) and characterized their functions in Aspergillus flavus, which produces aflatoxin B1 (AFB1), one of the most toxic and carcinogenic secondary metabolites. These five phosphatases were identified as negative regulators of MAPK (Slt2, Fus3 and Hog1) pathways. Deletion of Msg5 and Yvh1 resulted in significant defects in conidiation, sclerotia formation, aflatoxin production and crop infection. Additionally, double knockout mutants (ΔMsg5/ΔPtp1, ΔMsg5/ΔPtp2 and ΔMsg5/ΔOca2) displayed similar defects to those observed in the ΔMsg5 single mutant, indicating that Msg5 plays a major role in the regulation of development and pathogenicity in A. flavus. Importantly, we found that the active site at C439 is essential for the function of the Msg5 phosphatase. Furthermore, the MAP kinase Fus3 was found to be involved in the regulation of development, aflatoxin biosynthesis and pathogenicity, and its conserved phosphorylation residues (Thr and Tyr) were critical for the full range of its functions in A. flavus. Overall, our results reveal that MAPK related tyrosine phosphatases play important roles in the regulation of development, secondary metabolism and pathogenicity in A. flavus, and could be developed as potential targets for preventing damage caused by this fungal pathogen.  相似文献   

13.
Genes required for fungal secondary metabolite production are usually clustered, co‐regulated and expressed in stationary growth phase. Chromatin modification has an important role in co‐regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP‐qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin‐level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.  相似文献   

14.
Pectinase and sclerotium production by strains ofAspergillus flavus were determined with a pectinase culture plate assay and a Cz 3% NaNO3 medium plate assay. In theA. flavus population, 51% of isolates produced sclerotia, the toxigenic strains showing a tendency to have smaller sclerotia. Strains producing both abundant small sclerotia and a large quantity of aflatoxin were not found. There was no linear correlation between the amount of aflatoxin produced and the number of sclerotia. Levels of pectinase produced by the toxigenic strains were higher than that of the non-toxigenic strains, and this character was more obvious in the sclerotium-producing strains than in the non-sclerotium-prodcing strains. In theA. flavus population from Zhejiang in which the toxigenic strain rate was low, toxigenic strains may require higher levels of pectinase to compete with the non-toxigenic strains when infecting foodstuffs.  相似文献   

15.
In fungal species, lysine 56 of newly synthesized histone H3 molecules is modified by the acetyltransferase Rtt109, which promotes resistance to genotoxic agents. To further explore how H3 K56ac contributes to genome stability, we conducted screens for suppressors of the DNA damage sensitivity of budding yeast rtt109Δ mutants. We recovered a single extragenic suppressor mutation that efficiently restored damage resistance. The suppressor is a point mutation in the histone H3 gene HHT2, and converts lysine 56 to glutamic acid. In some ways, K56E mimics K56ac, because it suppresses other mutations that interfere with the production of H3 K56ac and restores histone binding to chromatin assembly proteins CAF-1 and Rtt106. Therefore, we demonstrate that enhanced association with chromatin assembly factors can be accomplished not only by acetylation-mediated charge neutralization of H3K56 but also by the replacement of the positively charged lysine with an acidic residue. These data suggest that removal of the positive charge on lysine 56 is the functionally important consequence of H3K56 acetylation. Additionally, the suppressive function of K56E requires the presence of a second H3 allele, because K56E impairs growth when it is the sole source of histones, even more so than does constitutive H3K56 acetylation. Our studies therefore emphasize how H3 K56ac not only promotes chromatin assembly but also leads to chromosomal malfunction if not removed following histone deposition.  相似文献   

16.
17.
Histone acetyltransferases and deacetylases maintain dynamics of lysine acetylation/deacetylation on histones and nonhistone substrates involved in gene regulation and cellular events. Hos2 is a Class I histone deacetylases that deacetylates unique histone H4‐K16 site in yeasts. Here, we report that orthologous Hos2 deacetylates H4‐K16 and is also involved in the acetylation of histone H3‐K56 and the phosphorylation of histone H2A‐S129 and cyclin‐dependent kinase 1 CDK1‐Y15 in Beauveria bassiana, a filamentous fungal insect pathogen. These site‐specific modifications are evidenced with hyperacetylated H4‐K16, hypoacetylated H3‐K56, and both hypophosphorylated H2A‐S129 and CDK1‐Y15 in absence of hos2. Consequently, the Δhos2 mutant suffered increased sensitivities to DNA‐damaging and oxidative stresses, disturbed cell cycle, impeded cytokinesis, increased cell size or length, reduced conidiation capacity, altered conidial properties, and attenuated virulence. These phenotypic changes correlated well with dramatic repression of many genes that are essential for DNA damage repair, G1/S transition and DNA synthesis, hyphal septation, and asexual development. The uncovered ability for Hos2 to directly deacetylate H4‐K16 and to indirectly modify H3‐K56, H2A‐S129, and CDK1‐Y15 provides novel insight into more subtle regulatory role for Hos2 in genomic stability and diverse cellular events in the fungal insect pathogen than those revealed previously in nonentomophathogenic fungi.  相似文献   

18.
19.
It was long been noted that secondary metabolism is associated with fungal development. In Aspergillus nidulans, conidiation and mycotoxin production are linked by a G protein signaling pathway. Also in A. nidulans, cleistothecial development and mycotoxin production are controlled by a gene called veA. Here we report the characterization of a veA ortholog in the aflatoxin-producing fungus A. parasiticus. Cleistothecia are not produced by Aspergillus parasiticus; instead, this fungus produces spherical structures called sclerotia that allow for survival under adverse conditions. Deletion of veA from A. parasiticus resulted in the blockage of sclerotial formation as well as a blockage in the production of aflatoxin intermediates. Our results indicate that A. parasiticus veA is required for the expression of aflR and aflJ, which regulate the activation of the aflatoxin gene cluster. In addition to these findings, we observed that deletion of veA reduced conidiation both on the culture medium and on peanut seed. The fact that veA is necessary for conidiation, production of resistant structures, and aflatoxin biosynthesis makes veA a good candidate gene to control aflatoxin biosynthesis or fungal development and in this way to greatly decrease its devastating impact on health and the economy.  相似文献   

20.

Background

Histone modifications are critical in regulating neuronal processes. However, the impacts of individual histone modifications on learning and memory are elusive. Here, we investigated the contributions of histone H3 lysine modifications to learning and memory in Drosophila by using histone lysine-to-alanine mutants.

Results

Behavioural analysis indicated that compared to the H3WT group, mutants overexpressing H3K23A displayed impaired courtship learning. Chromatin immunoprecipitation analysis of H3K23A mutants showed that H3K23 acetylation (H3K23ac) levels were decreased on learning-related genes. Knockdown of CREB-binding protein (CBP) decreased H3K23ac levels, attenuated the expression of learning-related genes, led to a courtship learning defect and altered development of the mushroom bodies. A decline in courtship learning ability was observed in both larvae and adult treatments with ICG-001. Furthermore, treatment of Drosophila overexpressing mutated H3K23A with a CBP inhibitor did not aggravate the learning defect.

Conclusions

H3K23ac, catalysed by the acetyltransferases dCBP, contributes to Drosophila learning, likely by controlling the expression of specific genes. This is a novel epigenetic regulatory mechanism underlying neuronal behaviours.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号