首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Engineering Disease Resistant Cattle   总被引:12,自引:0,他引:12  
Mastitis is a disease of the mammary gland caused by pathogens that find their way into the lumen of the gland through the teat canal. Mammary gland infections cost the US dairy industry approximately $2 billion dollars annually and have a similar impact in Europe. In the absence of effective treatments or breeding strategies to enhance mastitis resistance, we have created transgenic dairy cows that express lysostaphin in their mammary epithelium and secrete the antimicrobial peptide into milk. Staphylococcus aureus, a major mastitis pathogen, is exquisitely sensitive to lysostaphin. The transgenic cattle resist S. aureus mammary gland challenges, and their milk kills the bacteria, in a dose dependent manner. This first step in protecting cattle against mastitis will be followed by introduction of other genes to deal with potential resistance issues and other mastitis causing organisms. Care will be taken to avoid altering milk’s nutritional and manufacturing properties. Multi-cistronic constructs may be required to achieve our goals as will other strategies possibly involving RNAi and gene targeting technology. This work demonstrates the possibility of using transgenic technology to address disease problems in agriculturally important species. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

2.
Aims: Metagenomic analysis of milk samples collected from Kankrej, Gir (Bos indicus) and crossbred (Bos taurus × B. indicus) cattle harbouring subclinical mastitis was carried out by next‐generation sequencing 454 GS‐FLX technology to elucidate the microbial community structure of cattle milk. Methods and Results: Milk samples from Kankrej, Gir and crossbred cattle were subjected to metagenomic profiling by pyrosequencing. The Metagenomic analysis produced 63·07, 11·09 and 7·87 million base pairs (Mb) of sequence data, assembled in 264 798, 56 114 and 36 762 sequences with an average read length of 238, 197 and 214 nucleotides in Kankrej, Gir and crossbred cattle, respectively. Phylogenetic and metabolic profiles by the web‐based tool MG‐RAST revealed that the members of Enterobacteriales were predominant in mastitic milk followed by Pseudomonadales, Bacillales and Lactobacillales. Around 56 different species with varying abundance were detected in the subclinically infected milk. Escherichia coli was found to be the most predominant species in Kankrej and Gir cattle followed by Pseudomonas aeruginosa, Pseudomonas mendocina, Shigella flexneri and Bacillus cereus. In crossbred cattle, Staphylococcus aureus followed by Klebsiella pneumoniae, Staphylococcus epidermidis and E. coli were detected in descending order. Metabolic profiling indicated fluoroquinolones, methicillin, copper, cobalt–zinc–cadmium as the groups of antibiotics and toxic compounds to which the organisms showed resistance. Sequences indicating potential of organisms exhibiting multidrug resistance against antibiotics and resistance to toxic compounds were also present. Interestingly, presence of bacteriophages against Staph. aureus, E. coli, Enterobacter and Yersinia species was also observed. Conclusions: The analysis identified potential infectious organisms in mastitis, resistance of organisms to antibiotics and chemical compounds and the natural resistance potential of dairy cows. Significance and Impact of the Study: The findings of this study may help in formulating strategies for the prevention and treatment of mastitis in dairy animals and consequently in reducing economic losses incurred because of it.  相似文献   

3.
Klebsiella pneumoniae has become the number one bacterial pathogen that causes high mortality in clinical settings worldwide. Clinical K. pneumoniae strains with carbapenem resistance and/or hypervirulent phenotypes cause higher mortality comparing with classical K. pneumoniae strains. Rapid differentiation of clinical K. pneumoniae with high resistance/hypervirulence from classical K. pneumoniae would allow us to develop rational and timely treatment plans. In this study, we developed a convolution neural network (CNN) as a prediction method using Raman spectra raw data for rapid identification of ARGs, hypervirulence-encoding factors and resistance phenotypes from K. pneumoniae strains. A total of 71 K. pneumoniae strains were included in this study. The minimum inhibitory concentrations (MICs) of 15 commonly used antimicrobial agents on K. pneumoniae strains were determined. Seven thousand four hundred fifty-five spectra were obtained using the InVia Reflex confocal Raman microscope and used for deep learning-based and machine learning (ML) algorithms analyses. The quality of predictors was estimated in an independent data set. The results of antibiotic resistance and virulence-encoding factors identification showed that the CNN model not only simplified the classification system for Raman spectroscopy but also provided significantly higher accuracy to identify K. pneumoniae with high resistance and virulence when compared with the support vector machine (SVM) and logistic regression (LR) models. By back-testing the Raman-CNN platform on 71 K. pneumoniae strains, we found that Raman spectroscopy allows for highly accurate and rationally designed treatment plans against bacterial infections within hours. More importantly, this method could reduce healthcare costs and antibiotics misuse, limiting the development of antimicrobial resistance and improving patient outcomes.  相似文献   

4.
The aim of this study was to investigate the frequency, molecular characterization, virulence genes, resistance genes and antimicrobial profile of nosocomial extended spectrum beta lactamase producing Klebsiella species. A total of 22 (12.2%) K. pneumoniae strains were isolated from 180 clinical samples collected from hospitalized patients in Egypt. K. pneumoniae biotypes were B1 (72.8%), B3 (13.6%) and B4 (13.6%). The isolates were classified for the capsular serotypes, 86.4% (20/22) were of K1 serotype, while only two isolates (13.64%) were of K2 serotype. Hypermucoviscous K. pneumoniae isolates accounted for 68.2%. Biofilm formation ability of K. pneumoniae was determined by microtitre plate method. The majority of the isolates (40.9%) were moderate biofilm producers, while 27.3% were strong biofilm producers. All K. pneumoniae strains were positive for fimH and traT genes, while magA was identified in only 63.6% of the isolates. The antibiotic susceptibility profile of the isolates (n = 22) was determined by the disc diffusion technique using 23 different antibiotics. Streptomycin and imipenem are the most effective antibiotics against 22 tested K. pneumoniae isolates with sensitivity rates of 63.64% and 54.54% respectively. All tested K. pneumoniae isolates showed high resistance to amoxicillin∕clavulanate (100%), cefuroxime (100%) and ceftazidime (95.45%). Extended spectrum beta lactamases (ESBL) production and the presence of ESBL-related genes were tested in the isolates. All the isolates tested positive for blaVIM, NDM1 and blaTEM, while only 81.8 %tested positive for the blaSHV gene. Increasing antimicrobial resistance in K. pneumoniae causing nosocomial infections limits the use of antimicrobial agents for treatment. Furthermore, the spread of biofilm, multiple drug resistant and ESBL-producing K. pneumoniae isolates is a public threat for hospitalized patients.  相似文献   

5.
Isolation of Staphylococcus aureus (Staph. aureus) from Holstein milk samples with mastitis and nonmastitis was conducted to estimate its prevalence, antimicrobial resistance and toxin genes. A total of 353 milk samples were collected from three Chinese Holstein herds. Fifty‐three Staph. aureus isolates collected from 29 Staph. aureus‐positive samples were characterized via antimicrobial susceptibility, toxin genes and Pulsed‐field Gel Electrophoresis (PFGE) profiles. The prevalence of Staph. aureus was 4·0–9·5% in mastitic and 7·3–11·5% in nonmastitic samples in the analysed herds. Approximately 61·0% of Staph. aureus strains isolated from mastitis cows were resistant to ≥10 antimicrobials compared with 0% of isolates with nonmastitis. The most frequently observed super antigenic toxin gene was pvl (41·5%) followed by seh pvl (13·2%). We did not find mecA‐positive methicillin‐resistant Staph. aureus (MRSA) strains, while mecA‐negative MRSA strains were identified in the three herds. PFGE results suggested potential transmission of Staph. aureus strains in different farms. These results open new insights into Staph. aureus transmission and antimicrobial resistance of Holstein dairy cows and into developing strategies for udder health improvement of dairy cattle.  相似文献   

6.
E. coli is one of the major significant pathogens causing mastitis, the most complex and costly diseases in the dairy industry worldwide. Present study was undertaken to isolate, detect the virulence factors, phylogroup, antimicrobial susceptibility and antimicrobial resistance genes in E. coli from cows with clinical mastitis. A total of 68 milk samples comprising 53 from clinical mastitis and 15 from apparently healthy cattle were collected from four different established dairy farms in Bangladesh. E. coli was isolated from the milk samples and identified by PCR targeting malB gene and sequencing of 16S rRNA gene. E. coli isolates were screened by PCR for the detection of major virulence genes (stx, eae and cdt) of diarrheagenic E. coli followed by phylogenetic grouping. Antimicrobial susceptibility of the E. coli isolates was determined by disk diffusion test and E. coli showing resistance was further screened for the presence of antimicrobial resistance genes. E. coli was isolated from 35.8% of the mastitis milk samples but none from the apparently healthy cattle milk. All the E. coli isolates were negative for stx, eae and cdt genes and belonged to the phylogenetic groups A and B1 which comprising of commensal E. coli. Antibiotic sensitivity testing revealed 84.2% (16/19) of the isolates as multidrug resistant. Highest resistance was observed against amoxicillin (94.5%) followed by ampicillin (89.5%) and tetracycline (89.5%). E. coli were found resistant against all the classes of antimicrobials used at the farm level. Tetracycline resistance gene (tetA) was detected in 100% of the tetracycline resistant E. coli and blaTEM-1 was present in 38.9% of the E. coli isolates. Findings of this study indicate a potential threat of developing antimicrobial resistance in commensal E. coli and their association with clinical mastitis. Occurrence of multidrug resistant E. coli might be responsible for the failure of antibiotic therapies in clinical mastitis as well as pose potential threat of transmitting and development of antibiotic resistance in human.  相似文献   

7.
Protothecosis has been reported in humans (gastroenteritis, bursitis, etc.) and in many other animal species. Bovine mastitis represents the main form of occurrence of protothecosis in cattle. Milk as well as dairy products, when contaminated with Prototheca spp., represent a potential means of transmission of this zoonosis. The purpose of this study was to evaluate the susceptibility of forty Prototheca zopfii strains isolated from milk from intramammary infections in dairy cows and also from bulk milk tanks of dairy farms, to the different ratios of temperature/time employed in the thermal treatment of milk: 72–75 °C/1 5 seconds, 72–75 °C/20 seconds and 62–65 °C/30 minutes. The samples were subjected to these different temperature/time ratios. The evaluation of the thermal susceptibility of the P. zopfii strains showed that 34 strains were resistant in at least one of the tests. The results point out the need to consider the importance of mastitis caused by Prototheca spp. asrepresenting a public health risk. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.

Background

Multi-trait genomic models in a Bayesian context can be used to estimate genomic (co)variances, either for a complete genome or for genomic regions (e.g. per chromosome) for the purpose of multi-trait genomic selection or to gain further insight into the genomic architecture of related traits such as mammary disease traits in dairy cattle.

Methods

Data on progeny means of six traits related to mastitis resistance in dairy cattle (general mastitis resistance and five pathogen-specific mastitis resistance traits) were analyzed using a bivariate Bayesian SNP-based genomic model with a common prior distribution for the marker allele substitution effects and estimation of the hyperparameters in this prior distribution from the progeny means data. From the Markov chain Monte Carlo samples of the allele substitution effects, genomic (co)variances were calculated on a whole-genome level, per chromosome, and in regions of 100 SNP on a chromosome.

Results

Genomic proportions of the total variance differed between traits. Genomic correlations were lower than pedigree-based genetic correlations and they were highest between general mastitis and pathogen-specific traits because of the part-whole relationship between these traits. The chromosome-wise genomic proportions of the total variance differed between traits, with some chromosomes explaining higher or lower values than expected in relation to chromosome size. Few chromosomes showed pleiotropic effects and only chromosome 19 had a clear effect on all traits, indicating the presence of QTL with a general effect on mastitis resistance. The region-wise patterns of genomic variances differed between traits. Peaks indicating QTL were identified but were not very distinctive because a common prior for the marker effects was used. There was a clear difference in the region-wise patterns of genomic correlation among combinations of traits, with distinctive peaks indicating the presence of pleiotropic QTL.

Conclusions

The results show that it is possible to estimate, genome-wide and region-wise genomic (co)variances of mastitis resistance traits in dairy cattle using multivariate genomic models.  相似文献   

9.
《Genomics》2020,112(1):880-885
Milk production and composition are the most economically important traits affecting profitability in dairy cattle. In this study, we aimed at detecting signatures of positive selection in Kenana, known as one of the high milk production African indigenous zebu cattle, using next-generation sequencing data. To detect genomic signatures of positive selection, we applied three methods based on population comparison, fixation index (FST), cross population composite likelihood ratio (XP-CLR) and nucleotide diversity (Pi). Further analysis showed that several candidate genes such as CSN3, IGFBP-2, RORA, ABCG2, B4GALT1 and GHR are positively selected for milk production traits in Kenana cattle. The candidate genes and enriched pathways identified in this study may provide a basis for future genome-wide association studies and investigations into genomic targets of selection in dairy cattle.  相似文献   

10.
Yuan Z  Chu G  Dan Y  Li J  Zhang L  Gao X  Gao H  Li J  Xu S  Liu Z 《Molecular biology reports》2012,39(6):6625-6631
Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine breast cancer 1, early onset gene (BRCA1) was taken as a candidate gene for mastitis resistance. The main object of this study was to investigate whether the BRCA1 gene was associated with mastitis in cattle. Through DNA sequencing, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and Created Restriction Site PCR (CRS-PCR) methods, three SNPs (G22231T, T25025A, and C28300A) were detected and twenty-four combinations of these SNPs were observed. The single SNP and their genetic effects on somatic cell score (SCS) were evaluated and a significant association with SCS was found in C28300A. The mean of genotype EE was significantly lower than those of genotypes EF and FF. The results of combined genotypes analysis of three SNPs showed that BBDDFF genotype with the highest SCS were easily for the mastitis susceptibility, whereas AACCEE genotype with the lowest SCS were favorable for the mastitis resistance. The information provided in the present study will be very useful for improving mastitis resistance in dairy cattle by marker-assisted selection.  相似文献   

11.
This study aimed to investigate the molecular mechanisms of carbapenem and colistin resistance in K. pneumoniae and E. coli isolates obtained from hospitalized patients in Carthagene International Hospital of Tunis. A total of 25 K. pneumoniae and 2 E. coli clinical isolates with reduced susceptibility to carbapenems were recovered. Susceptibility testing and phenotypic screening tests were carried out. ESBL, AmpC, carbapenemase and other antibiotic resistance genes were sought by PCR-sequencing. The presence of plasmid-mediated colistin resistance genes (mcr-1-8) was examined by PCR and the nucleotide sequence of the mgrB gene was determined. The analysis of plasmid content was performed by PCR-Based Replicon Typing (PBRT). The clonality of isolates was assessed by PFGE and multilocus sequence typing (MLST). All of the isolates produced carbapenemase activity. They showed a great variation in the distribution of ESBL, AmpC, carbapenemase and other plasmid-mediated resistance determinants. K. pneumoniae isolates carried blaNDM-1 (n = 11), blaOXA-48 (n = 11), blaNDM-1 + blaOXA-48 (n = 1), blaNDM-1 + blaVIM-1 (n = 1), blaOXA-204 (n = 1), along with blaCTX-M, blaOXA, blaTEM, blaCMY, blaDHA and blaSHV genes variants on conjugative plasmid of IncL/M, IncR, IncFIIK, IncFIB, and IncHI1 types. Three sequence types ST101, ST307 and ST15 were identified. The mgrB alteration g109a (G37S) was detected in a single colistin-resistant, NDM-1 and OXA-48-coproducing K. pneumoniae isolate. The two E. coli isolates belonged to ST95, co-produced NDM-1 and CTX-M-15, and harboured plasmid of IncFII and IncFIB types. To our knowledge, this is the first report in Tunisia of NDM-1, OXA-48, and CTX-M-15 coexistence in colistin-resistant K. pneumoniae ST15.  相似文献   

12.
Pseudomonas aeruginosa is a pathogen in both humans and animals. This bacterium, most often associated with respiratory infections in cystic fibrosis patients, was found to be the causative agent in bovine mastitis outbreaks among 11 Irish dairy herds. Epidemiological findings suggested that the infection was spread to all herds by teat wipes that had been contaminated with this organism. Two molecular-typing strategies were used in an attempt to determine the genomic relationship(s), if any, of the P. aeruginosa strains isolated from the various herds and to verify whether the same strain was responsible for each outbreak. Thirty-six isolates from the mastitis outbreaks were tested and compared to fourteen clinical isolates from Cork University Hospital. With one exception, all outbreak-linked strains produced identical patterns when ribotyped with ClaI and PvuII enzymes. Eight of the clinical isolates gave the same ClaI ribotype pattern as the mastitis-causing strains. However, PvuII proved more discriminatory, with only the outbreak isolates producing identical patterns. Similar results were obtained with RW3A-primed DNA amplification fingerprinting, with all outbreak isolates except one displaying the same fingerprint array. The clinical strains produced several fingerprint patterns, all of which were different from those of the mastitis-causing isolates. Fine-resolution DNA fingerprinting with a fluorescence-labelled RW3A primer also identified a number of low-molecular-weight polymorphisms that would have remained undetected by conventional methods. These data support the view that the same P. aeruginosa strain was responsible for the mastitis outbreaks in all 11 herds.  相似文献   

13.
14.

Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.

  相似文献   

15.
Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine TLR4 was taken as a candidate gene for mastitis resistance. This study aimed to analyze the associations of single nucleotide polymorphisms (SNP) or haplotype and somatic cell score (SCS) in 404 Chinese commercial dairy cattle including Chinese Holstein, Sanhe cattle and Chinese Simmental breeds. The polymerase chain reaction and sequencing methods were used for detecting genotype and allele frequency distribution of the two SNPs (rs8193062, rs8193064), statistical results showed that T allele at rs8193062 and C allele at rs8193064 were the predominate alleles. Moreover, six SNPs, including two SNPs (rs8193062, rs8193064) and four SNPs (rs8193060, rs8193069, rs29017188, rs8193046) which were chosen according the polymorphism level for the same cattle populations in previous studies, were used for haplotype analysis, the results revealed that twenty-one haplotypes were found in the mentioned animals, of which, Hap1 (30.5 %) and Hap2 (30.4 %) were the most common haplotypes. Hap2, Hap4 and Hap12 might negatively effect on milk SCS, whereas Hap13 might positively effect on milk SCS. The results in this study might assist in marker assisted selection and provided some reference to be implemented in breeding programs to improve the mastitis resistance of dairy cattle.  相似文献   

16.
Aims: To determine the occurrence of Shiga toxin‐producing Escherichia coli (STEC) O157 and coliform bacteria isolates resistant to antimicrobial agents in dairy herds by examining milk filters and to analyse the influence of management factors and antibiotic use on antimicrobial resistance. Methods and Results: A total of 192 in‐line milk filters were sampled on 192 dairy farms in the Czech Republic. Information on feeding, husbandry, production, and antibiotic therapy were obtained by questionnaire. The milk filters were cultured for STEC O157 and coliform bacteria. All recovered isolates were examined for antimicrobial susceptibility and presence of antimicrobial‐resistance genes. STEC O157 was detected in four (2%) of the filters. Resistant nonpathogenic E. coli and coliform bacteria isolates with specific genes were detected in 44 (23%) of the filters. Conclusions: The study demonstrated a high prevalence of resistant coliform bacteria in milk filters obtained on Czech dairy farms. Significance and Impact of the Study: The occurrence of resistant coliform bacteria in milk filters was significantly higher among isolates from farms where antibiotic therapy against mastitis was employed during the dry period (P < 0·05).  相似文献   

17.
【目的】调查野生鸟类携带菌的耐药状况,探索其在细菌耐药性传播过程中的作用。【方法】从野生鸟类石鸡、绯胸鹦鹉、太阳锥尾鹦鹉和黑领椋鸟的新鲜粪便分离4株Klebsiella pneumoniae,采用微量肉汤稀释法评估其多重耐药表型,并利用全基因组测序技术和细菌全因组关联分析、比较基因组学方法对分离株进行分子溯源,系统解析其携带的多重耐药质粒或基因与其宿主、同源质粒间的关联。【结果】4株肺炎克雷伯菌的耐药谱各不相同,来自石鸡样本的分离株S90-2对9种药物耐受,绯胸鹦鹉样本分离株S141对3种药物耐受,太阳锥尾鹦鹉分离株M911-1仅耐受氨苄西林,黑领椋鸟的样本分离株S130-1对所使用的14种药物完全敏感。S90-2属于ST629型,携带blaCTX-M-14fosA6aac(3)-IidblaSHV-11为主的30个耐药基因和携带1个耐药性质粒pS90-2.3 (IncR型)。S141属于ST1662型,携带fosA5blaSHV-217等27个耐药基因,1个质粒pS141.1 [IncFIB(K)(pCAV1099-114)/repB型]仅携带耐药基因adeF。M911-1为新ST类型,携带blaSHV-1fosA6等共计27个耐药基因,其质粒pM911-1.1携带了3个耐药基因。S130-1属于ST3753型,携带blaSHV-11fosA6等27个耐药基因,pS130-1 [IncFIB(K)型]则仅携带一个耐药基因tet(A)。质粒比对表明,质粒pS90-2.3携带的耐药基因片段源自不同的肠杆菌科菌株染色体或质粒。pS90-2.3的同源质粒主要来自人类宿主菌,且主要在中国分布,这些质粒主要细菌宿主为K. pneumoniaeEscherichia coli,且ST11型K. pneumoniae分离株为重要宿主菌。【结论】本研究中来自野生鸟类的多重耐药K. pneumoniae,其耐药基因主要来自质粒,质粒耐药基因主要由转座子、插入序列、整合子和前噬菌体等可移动元件介导,这些多重耐药质粒与人类的宿主菌密切相关。  相似文献   

18.
A genome‐wide association study (GWAS) was conducted on 15 milk production traits in Chinese Holstein. The experimental population consisted of 445 cattle, each genotyped by the GGP (GeneSeek genomic profiling)‐BovineLD V3 SNP chip, which had 26 151 public SNPs in its manifest file. After data cleaning, 20 326 SNPs were retained for the GWAS. The phenotypes were estimated breeding values of traits, provided by a public dairy herd improvement program center that had been collected once a month for 3 years. Two statistical models, a fixed‐effect linear regression model and a mixed‐effect linear model, were used to estimate the association effects of SNPs on each of the phenotypes. Genome‐wide significant and suggestive thresholds were set at 2.46E‐06 and 4.95E‐05 respectively. The two statistical models concurrently identified two genome‐wide significant (< 0.05) SNPs on milk production traits in this Chinese Holstein population. The positional candidate genes, which were the ones closest to these two identified SNPs, were EEF2K (eukaryotic elongation factor 2 kinase) and KLHL1 (kelch like family member 1). These two genes could serve as new candidate genes for milk yield and lactation persistence, yet their roles need to be verified in further function studies.  相似文献   

19.
Bovine mastitis is an infectious disease of the mammary glands of dairy cattle primarily causaled by the bacterium, Staphylococcus aureus subsp. aureus Rosenbach1884. Traditional control of this organism was through the use of antibiotics. However, S. aureus is developing resistance towards these chemotherapeutic agents faster than they are being developed. Bacteriophages can serve as an alternative control measure for the disease. This study investigated the prevalence of phages and S. aureus within the South African dairy environment, as well as infectivity of phage isolates against antibiotic-resistant S. aureus. The four S. aureus strains used in the study displayed resistance to representative antibiotics from both the β-lactamases and non-β-lactamases, macrolides, aminoglycosides and glycopeptides. Susceptibility was only noted towards the tetracycline antibiotics. Twenty-eight phages were isolated and screened against four strains of S. aureus. Only six phages showed biocontrol potential based on their wide host range, high titres and common growth requirements. Morphological and preliminary genomic analysis was carried out on the three best performing phages. At an optimal titre of between 6.2 × 107 and 2.9 × 108 pfu.ml?1, the phages were able to reduce live bacterial cell counts between 64% and 95%. In addition, these six phages showed further infectivity towards S. aureus strains that were isolated from different milk-producing regions during a farm survey. The phages isolated in this study show reasonable potential for in vivo applications.  相似文献   

20.
Aims: The role of antibiotics produced by bacterial symbionts of entomopathogenic nematodes is to suppress growth of microbes in the soil environment. These antibiotics are active against Gram‐positive and Gram‐negative bacteria, and were tested against mastitis isolates from dairy cows. Methods and Results: Two bioassays were adapted for Xenorhabdus antibiotics; an overlay method on agar plates, and serially diluted, cell‐free, Xenorhabdus cultures. The antimicrobial activities of the liquid cultures of 13 strains from five Xenorhabdus species were further evaluated. Antimicrobial activities of the type strains of X. nematophila, X. budapestensis and X. szentirmaii were tested on mastitis isolates of Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae with both bioassays. A previously reported antibiotic from X. nematophila, nematophin, was synthesized in three steps from tryptamine and 4‐methyl‐2‐oxovaleric acid sodium salt. Conclusions: The antibiotics of all three Xenorhabdus strains were powerful in either bioassay, but the sensitivity of the isolates differed from each other. While Kl. pneumoniae was the least susceptible, Staph. aureus had the highest sensitivity to each Xenorhabdus strain. Xenorhabdus szentirmaii and X. budapestensis were more potent antibiotic producers than X. nematophila, and raceme nematophin was ineffective against all mastitis isolates. Significance and Impact of the Study: These results indicate that Xenorhabdus antibiotics are effective against mastitis isolates and should be further evaluated for their potential in mastitis control or prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号