首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subject Categories: Membranes & Trafficking, Microbiology, Virology & Host Pathogen Interaction, Structural Biology

We recently reported the first structures of the Plasmodium falciparum transporter PfFNT, both in the absence and presence of the inhibitor MMV007839 (Lyu et al, 2021). These structures indicated that PfFNT assembles as a pentamer. The bound MMV007839 was found in the middle of the elongated channel formed by each PfFNT protomer, adjacent to residue G107. MMV007839 exists in two tautomeric forms and can adopt either a cyclic hemiketal‐like structure or a linear vinylogous acid conformation (Fig (Fig3A).3A). Unfortunately, these two tautomeric forms could not be clearly distinguished based on the existing cryo‐EM data at 2.78 Å resolution. The bound MMV007839 inhibitor was reported as the cyclic hemiketal‐like form in the structure in Figs Figs3A3A and andF,F, and and4C,4C, Appendix Figs S10A and B, and S13 and in the online synopsis image.Open in a separate windowFigure 3Cryo‐EM structure of the PfFNT‐MMV007839 complex
  1. Chemical structure of MMV007839. The compound can either be in cyclic hemiketal‐like or linear vinylogous acid tautomeric forms.
  2. Cryo‐EM density map of pentameric PfFNT viewed from the parasite’s cytoplasm. Densities of the five bound MMV007839 within the pentamer are colored red. The five protomers of pentameric PfFNT are colored yellow, slate, orange, purple, and gray.
  3. Ribbon diagram of the 2.18‐Å resolution structure of pentameric PfFNT‐MMV007839 viewed from the parasite’s cytoplasm. The five protomers of pentameric PfFNT are colored yellow, slate, orange, purple, and gray.
  4. Ribbon diagram of pentameric PfFNT‐MMV007839 viewed from the extracellular side of the parasite. The five protomers of pentameric PfFNT are colored yellow, slate, orange, purple, and gray.
  5. Ribbon diagram of pentameric PfFNT‐MMV007839 viewed from the parasite’s membrane plane. The five protomers of pentameric PfFNT are colored yellow, slate, orange, purple, and gray. Densities of the five bound MMV007839 are depicted as red meshes.
  6. The MMV007839‐binding site of PfFNT. The bound MMV007839 is colored green. Density of the bound MMV007839 is depicted as black mesh. Residues involved in forming the inhibitor binding site are colored yellow. The hydrogen bonds are highlighted with black dotted lines.
Open in a separate windowFigure 4Structure of the central channel in the PfFNT‐MMV007839 protomer
  • CA cartoon of the central channel formed within a PfFNT protomer. The channel contains one constriction site in this conformational state. Residues forming the constriction and the K35‐D103‐N108 and K177‐E229‐N234 triads are illustrated as sticks. Residues F94, I97, and L104, which form the first constriction site in the apo‐PfFNT structure, are also included in the figure.
Eric Beitz alerted us to the findings reported by his group that the linear vinylogous acid tautomer of MMV007839 constitutes the binding and inhibitory entity of PfFNT (Golldack et al, 2017).  相似文献   

2.
3.
Even if the predominant model of science communication with the public is now based on dialogue, many experts still adhere to the outdated deficit model of informing the public. Subject Categories: Genetics, Gene Therapy & Genetic Disease, S&S: History & Philosophy of Science, S&S: Ethics

During the past decades, public communication of science has undergone profound changes: from policy‐driven to policy‐informing, from promoting science to interpreting science, and from dissemination to interaction (Burgess, 2014). These shifts in communication paradigms have an impact on what is expected from scientists who engage in public communication: they should be seen as fellow citizens rather than experts whose task is to increase scientific literacy of the lay public. Many scientists engage in science communication, because they see this as their responsibility toward society (Loroño‐Leturiondo & Davies, 2018). Yet, a significant proportion of researchers still “view public engagement as an activity of talking to rather than with the public” (Hamlyn et al, 2015). The highly criticized “deficit model” that sees the role of experts as educating the public to mitigate skepticism still persists (Simis et al, 2016; Suldovsky, 2016).Indeed, a survey we conducted among experts in training seems to corroborate the persistence of the deficit model even among younger scientists. Based on these results and our own experience with organizing public dialogues about human germline gene editing (Box 1), we discuss the implications of this outdated science communication model and an alternative model of public engagement, that aims to align science with the needs and values of the public.Box 1

The DNA‐dialogue project

The Dutch DNA‐dialogue project invited citizens to discuss and form opinions about human germline gene editing. During 2019 and 2020, this project organized twenty‐seven dialogues with professionals, such as embryologists and midwives, and various lay audiences. Different scenarios of a world in 2039 (https://www.rathenau.nl/en/making‐perfect‐lives/discussing‐modification‐heritable‐dna‐embryos) served as the starting point. Participants expressed their initial reactions to these scenarios with emotion‐cards and thereby explored the values they themselves and other participants deemed important as they elaborated further. Starting each dialogue in this way provides a context that enables everyone to participate in dialogue about complex topics such as human germline gene editing and demonstrates that scientific knowledge should not be a prerequisite to participate.An important example of “different” relevant knowledge surfaced during a dialogue with children between 8 and 12 years in the Sophia Children’s Hospital in Rotterdam (Fig 1). Most adults in the DNA‐dialogues accepted human germline gene modification for severe genetic diseases, as they wished the best possible care and outcome for their children. The children at Sophia, however, stated that they would find it terrible if their parents had altered something about them before they had been born; their parents would not even have known them. Some children went so far to say they would no longer be themselves without their genetic condition, and that their condition had also given them experiences they would rather not have missed.Open in a separate windowFigure 1 Children participating in a DNA‐dialogue meeting. Photographed by Levien Willemse.  相似文献   

4.
We highlight a case on a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophilic infiltrate and thrombus consistent with chronic infarction and torsion. Splenogonadal fusion (SGF) is a rather rare entity, with approximately 184 cases reported in the literature. The most comprehensive review was that of 123 cases completed by Carragher in 1990. Since then, an additional 61 cases have been reported in the scientific literature. We have studied these 61 cases in detail and have included a summary of that information here.Key words: Splenogonadal fusion, Acute scrotumA 10-year-old boy presented with worsening left-sided scrotal pain of 12 hours’ duration. The patient reported similar previous episodes occurring intermittently over the past several months. His past medical history was significant for left hip dysplasia, requiring multiple hip surgeries. On examination, he was found to have an edematous left hemiscrotum with a left testicle that was rigid, tender, and noted to be in a transverse lie. The ultrasound revealed possible polyorchism, with two testicles on the left and one on the right (Figure 1), and left epididymitis. One of the left testicles demonstrated a loss of blood flow consistent with testicular torsion (Figure 2).Open in a separate windowFigure 1Ultrasound of the left hemiscrotum reveals two spherical structures; the one on the left is heterogeneous and hyperdense in comparison to the right.Open in a separate windowFigure 2Doppler ultrasound of left hemiscrotum. No evidence of blood flow to left spherical structure.The patient was taken to the operating room for immediate scrotal exploration. A normalappearing left testicle with a normal epididymis was noted. However, two accessory structures were noted, one of which was torsed 720°; (Figure 3). An inguinal incision was then made and a third accessory structure was noted. All three structures were connected with fibrous tissue, giving a “rosary bead” appearance. The left accessory structures were removed, a left testicular biopsy was taken, and bilateral scrotal orchipexies were performed.Open in a separate windowFigure 3Torsed accessory spleen with splenogonadal fusion.Pathology revealed a normal left testicle with a fibrovascular cord with three nodules consistent with splenic tissue. The torsed splenule demonstrated hemorrhage with neutrophillic infiltrate and thrombus consistent with chronic infarction and torsion (Figure 4).Open in a separate windowFigure 4Splenogonadal fusion, continuous type with three accessory structures.  相似文献   

5.
Understanding the mechanisms by which natural anti‐freeze proteins protect cells and tissues from cold could help to improve the availability of donor organs for transplantation.

The first successful organ transplant in humans was performed in 1954 by Joseph Murray, who used a patient’s twin as a kidney donor. Murrays’ breakthrough paved the way for organ transplantation and the number of transplanted organs has grown ever since. For example, in 2017, a total of 139.024 solid organs—mostly kidney, liver, heart, lung, pancreas, and small bowel—were transplanted (Fig 1A). But this number only reflects 10% of the worldwide need; many patients still die of end‐stage organ failure while on a waiting list. The limited number of donor organs contributes only partially to this shortage. Many donor organs are not transplanted eventually owing to inefficient preservation techniques that shorten their extracorporeal lifetime. In fact, the percentage of donor organs that are unused is estimated to range from around 25% for kidneys and livers up to 70–80% for hearts and lungs (Giwa et al, 2017); Fig 1B).Open in a separate windowFigure 1Organ transplantation and preservability statusStatistics show a positive correlation between the duration of ex vivo preservation and the number of organ transplants. Number of solid organs transplanted in 2017 (A). Percentage of organs failed to be transplanted (B). Duration of solid organ ex vivo preservation in static cold storage (C). Sources: Data from the Global Observatory on Donation and Transplantation and (Parsons et al, 2014), (Guibert et al, 2011) and (Editorial: Buying time for transplants (2017))
Many donor organs are not transplanted eventually owing to inefficient preservation techniques that shorten their extracorporeal lifetime.
To address the shortage of donor organs and decrease the number of organs that go to waste, biobanks could efficiently store viable tissues and organs until transplantation. Yet, the current standard for ex vivo preservation of donor organs is static cold storage (4–8°C) which, depending on the organ, ensures viable conservation for only some hours; hearts are typically viable for a maximum of only 4 h (Fig 1C). In addition, this approach leads to hypothermic damage and to ischemia/reperfusion injury.Hence, there is an urgent need for strategies that prolong the viable preservation of donor organs. Two main strategies have emerged for cryopreservation and subzero storage, both of which cool tissues below the freezing point. While subzero storage just below 0°C may suffice for short‐term preservation, cryopreservation at −80°C or even lower temperatures is required for long‐term storage in biobanks. A proof‐of‐principle study already demonstrated that subzero preservation extended the preservation of rat hearts up to 24 h after collection (Amir et al, 2004); cryopreservation of whole hearts is currently not possible. The main reason is that lowering the temperature below the freezing point of water leads to ice formation, which causes cell damage and destroys tissues. One of the main challenges in biomedical research for organ transplantation is therefore finding non‐toxic and biocompatible antifreeze compounds that enable subzero storage and cryopreservation without causing tissue damage. An additional benefit is a larger time window to perform evaluation in terms of organ size and human leukocyte antigens matching and preparing the recipient patient to increase the chance of a successful transplantation.  相似文献   

6.
7.

Introduction

Buruli Ulcer (BU) is caused by the environmental microbe Mycobacterium ulcerans. Despite unclear transmission, contact with a BU endemic region is the key known risk factor. In Victoria, Australia, where endemic areas have been carefully mapped, we aimed to estimate the Incubation Period (IP) of BU by interviewing patients who reported defined periods of contact with an endemic area prior to BU diagnosis.

Method

A retrospective review was undertaken of 408 notifications of BU in Victoria from 2002 to 2012. Telephone interviews using a structured questionnaire and review of notification records were performed. Patients with a single visit exposure to a defined endemic area were included and the period from exposure to disease onset determined (IP).

Results

We identified 111 of 408 notified patients (27%) who had a residential address outside a known endemic area, of whom 23 (6%) reported a single visit exposure within the previous 24 months. The median age of included patients was 30 years (range: 6 to 73) and 65% were male. 61% had visited the Bellarine Peninsula, currently the most active endemic area. The median time from symptom onset to diagnosis was 71 days (range: 34–204 days). The midpoint of the reported IP range was utilized to calculate a point estimate of the IP for each case. Subsequently, the mean IP for the cohort was calculated at 135 days (IQR: 109–160; CI 95%: 113.9–156), corresponding to 4.5 months or 19.2 weeks. The shortest IP recorded was 32 days and longest 264 days (Figure 1 & 2). IP did not vary for variables investigated.Open in a separate windowFigure 1Geographic representation of Bellarine Peninsula, considered endemic for BU as of 2012.Bellarine Peninsula – east of line from Geelong to Torquay. Mornington and Westernport – southwest of line from Hampton to Tooradin (including Phillip Island).Open in a separate windowFigure 2Geographic representation of East Gippsland, considered endemic for BU as of 2012.East Gippsland: East of Sale and south of the great divide.

Conclusions

The estimated mean IP of BU in Victoria is 135 days (IQR: 109–160 days), 4.5 months. The shortest recorded was IP 34 days and longest 264 days. A greater understanding of BU IP will aid clinical risk assessment and future research.  相似文献   

8.

Recent cryo‐EM‐based models reveal how the ER membrane protein complex may accomplish insertion of protein transmembrane domains with limited hydrophobicity.

Insertion of strongly hydrophobic TMDs into the ER membrane is mediated by the Sec61 complex for co‐translational insertion and the GET complex for post‐translational insertion of tail‐anchors (Volkmar & Christianson, 2020). By contrast, the EMC inserts TMDs of limited hydrophobicity, frequently located at the N‐ or C‐termini of proteins, and is involved in biogenesis of multi‐spanning membrane proteins (Volkmar & Christianson, 2020).The EMC is highly conserved (Wideman, 2015). In vertebrates, ten subunits have been identified (EMC1‐10), two of which, EMC8 and EMC9, are homologous and the result of a vertebrate‐specific gene duplication (Wideman, 2015). In Saccharomyces cerevisiae, EMC8 has been lost (Wideman, 2015). Only EMC3 displays clear homology to other membrane protein insertases, the Oxa1 family (Wideman, 2015; Volkmar & Christianson, 2020). This family includes YidC, which inserts TMDs into the bacterial cytoplasmic membrane, usually in cooperation with the Sec61‐homologous SecYEG channel (Volkmar & Christianson, 2020). Their association, along with the SecDF ancillary complex, forms a holo‐translocon capable of protein secretion and TMD insertion, with striking similarities to the EMC complex (Martin et al, 2019).Recent work by Pleiner et al (2020) presented a 3.4 Å cryo‐EM structure of the human EMC purified via a GFP‐tag on EMC2 and incorporated into a phospholipid nanodisc. The complex is formed by nine proteins (EMC1‐8, EMC10) (Pleiner et al, 2020). EMC8 and EMC9 are structurally similar, and their association with EMC2 is mutually exclusive (O''Donnell et al, 2020). Of the 12 TMDs, nine constitute the pseudosymmetric central ordered core, with a basket‐shaped cytosolic vestibule formed primarily by alpha‐helices of the EMC3 and EMC6 TMDs and cytosolic EMC2 (Fig 1A; Pleiner et al, 2020). The L‐shaped lumenal domain of the EMC consists mostly of beta‐sheets (Fig 1A; Pleiner et al, 2020), flanked by a conspicuous and conserved amphipathic alpha‐helix of EMC1 sealing the vestibule at the interface between the membrane and the ER lumen, together with another smaller amphipathic helix contributed by EMC3 (Fig 1A; Pleiner et al, 2020). In the ER lumen, the two 8‐bladed propellers of EMC1 contact six of the eight other subunits and stabilize the entire complex (Fig 1A; Pleiner et al, 2020). Beta‐sandwiches of EMC7 and EMC10 are anchored to the EMC1 lumenal domain (Fig 1A; Pleiner et al, 2020). In the cytosol, the tetratricopeptide repeat (TPR) spiral of EMC2 forms a cup underneath the partially hydrophilic vestibule in the membrane between the TMDs of EMC3 and EMC6, bridging the cytosolic ends of TMDs of EMC1, 3 and 5 (Fig 1A; Pleiner et al, 2020). Cytosolic EMC8 is bound to the opposite face of EMC2 (Fig 1A).Open in a separate windowFigure 1Comparison of the structures of human and yeast EMC(A) Cryo‐EM 3D map of the human (emdb‐21929) and yeast (emdb‐21587) EMC, showing front and back views with individual subunits coloured. Membrane position, obtained from the OPM database, is shown by grey discs. (B) Close‐up view of the EMC cavity formed by EMC3 and EMC6. Left, shown in a hydrophobicity surface pattern. Right, surface representation overlapped with the TMDs of EMC3 and EMC6. EMC4, flexible and with a gate function at the substrate‐binding place, is shown in pink in the yeast representation. EMC4 is not visible at the atomic EMC human structure, although is observed as a weak density at the human model, accompanied by TMs of EMC7 and EMC10 (Pleiner et al, 2020). (C) The yeast EMC following > 5 µs of CG‐MD simulation. The protein is shown as surface and coloured as per Pleiner et al (2020). The computed densities of waters and phospholipid tails and phosphates are shown as blue, yellow and lime green densities, sliced to bisect the cavity for clarity. Right, inset of the EMC cavity. Methods: CG‐MD simulations were built using PDB 6WB9 in a solvated symmetric POPC/POPE/cholesterol membrane and run in the Martini forcefield as described in Martin et al (2019). 3 µs unrestrained simulations were run, followed by 2.5 µs backbone restrained simulation for density calculation, done using VolMap in VMD (Humphrey et al, 1996).The 3.0 Å cryo‐EM structure of the yeast EMC presented by Bai and colleagues shows a very similar overall organization (Bai et al, 2020). Here, purification was via a 3xFLAG‐tag on EMC5, and the structure of the 8‐subunit complex (without EMC8/9) was visualized in detergent solution (Bai et al, 2020). The yeast complex has twelve TMDs like the human EMC, but unlike the human structure, EMC4 in yeast has three TMDs that are clearly visible (Bai et al, 2020). They are angled in the membrane pointing away from the complex at the cytosolic end (Fig 1A), and Bai et al (2020) propose that TMDs of EMC4, EMC3 and EMC6 form a substrate‐binding pocket similar to that of YidC. As in the human EMC, there are two amphipathic helices (EMC1 and EMC3) at the membrane/lumen interface (Fig 1A; Bai et al, 2020). In the ER lumen, yeast EMC1 only has one 8‐bladed beta‐propeller, to which the beta‐sandwiches of EMC7 and EMC10 are anchored (Fig 1A; Bai et al, 2020). In the cytosol, EMC2 bridges EMC3, 4 and 5, and its TPR repeats form a cup underneath the vestibule similar to human EMC2 (Fig 1A; Bai et al, 2020).The authors propose that insertion of a partially hydrophilic TMD by the yeast EMC is mechanistically similar to insertion by bacterial YidC (Bai et al, 2020). Yeast EMC is proposed to bind substrate between TMD2 of EMC3 and TMD2 of EMC4 in a pocket with polar and positively charged amino acids at either end and hydrophobic amino acids in the centre (Fig 1B; Bai et al, 2020). Much has been made of a conserved positive region within the EMC complex here, present in an equivalent position also in YidC (Kumazaki et al, 2014): It is claimed to be important for the incorporation of more‐hydrophilic TMDs and perhaps responsible for the “positive‐inside” orientation rule (von Heijne, 1992). Yeast and human EMC3 contain a specific R31 and R26 residue, respectively, conserved also in YidC and important for function of the EMC, as well as for YidC in Gram‐positive, but interestingly not Gram‐negative, bacteria (Chen et al, 2014; Pleiner et al, 2020; Bai et al, 2020). Another interesting feature, also conserved with YidC, is the flexibility of the TMDs flanking the substrate‐binding pocket, critical for EMC entry of substrates (Bai et al, 2020).In the human EMC, methionine residues in a cytosolic loop of EMC3 act as a substrate bait (Pleiner et al, 2020). Polar and charged residues within the substrate‐binding groove guide the lumenal domain across the membrane, facilitated by local membrane thinning (Pleiner et al, 2020; Fig 1B). The positive charges within the substrate‐binding site exclude signal peptides and enforce the “positive‐inside rule” (von Heijne, 1992; Pleiner et al, 2020). Flexible TMDs of EMC4, EMC7 and EMC10 forming a “lateral gate” of the substrate‐binding groove allow sampling of the bilayer by the substrate TMD (Pleiner et al, 2020). As the shortened TMDs of EMC3 and EMC6 cannot stably bind the substrate TMD, they favour its release into the bilayer (Pleiner et al, 2020). The EMC1 beta‐propeller(s) may recruit additional protein maturation factors in the ER lumen (Pleiner et al, 2020; Bai et al, 2020) or bind the Sec61 channel to allow cooperation between the two insertases (Bai et al, 2020).Arguably, the most interesting feature of the EMC complex is the location of a large interior cavity with distinctive hydrophilic character, which likely aids TMD insertion (Fig 1B). We ran a coarse‐grained molecular dynamics (CG‐MD) simulation of the yeast EMC structure, which highlights a profound perturbation of the phospholipid bilayer in the EMC interior cavity (Fig 1C). Here, a deep gorge forms in the cytoplasmic leaflet of the bilayer, allowing the cavity to become flooded with water (Fig 1C). Note the location of the lipid head groups here (lime green), which presumably define the site of amphipathic TMD insertion. The incursion of phospholipids into the centre of the EMC complex is a feature shared by the bacterial holo‐translocon (Martin et al, 2019) and perhaps by all membrane protein insertases. The shape and character of the EMC cavity presumably dictate its predisposition for less hydrophobic TMDs; it would be interesting to see whether the cavities of different insertases are similarly tailored to suit their substrates.  相似文献   

9.
A primary function of the spindle apparatus is to segregate chromosomes into two equal sets in a dividing cell. It is unclear whether spindles in different cell types play additional roles in cellular regulation. As a first step in revealing new functions of spindles, we investigated spindle morphology in different cell types in Arabidopsis roots in the wild-type and the cytokinesis defective1 (cyd1) mutant backgrounds. cyd1 provides cells larger than those of the wild type for testing the cell size effect on spindle morphology. Our observations indicate that cell type (shape), not cell size, is likely a factor affecting spindle morphology. At least three spindle types were observed, including small spindles with pointed poles in narrow cells, large barrel-shaped spindles (without pointed poles) in wide cells, and spindles intermediate in pole focus and size in other cells. We hypothesize that the cell-type-associated spindle diversity may be an integral part of the cell differentiation processes.Key words: spindle pole, microtubule, morphogenesis, cell type, metaphaseThe cellular apparatus for chromosome segregation during mitosis is typically described as a spindle composed of microtubules and microtubule-associated proteins. Research on the structure and function of the spindle is usually conducted under the assumption that spindles are structurally the same or alike in different cell types in an organism. If the assumption is true, it would indicate that either the intracellular conditions in different dividing cells are very similar or the assembly and maintenance of the spindle are insensitive to otherwise variable intracellular conditions. But experimental evidence related to this assumption is relatively sparse.The root tip in Arabidopsis, as in other higher plants, contains dividing cells of different shapes and sizes. These cells include both meristem initial and derivative cells, with the former and latter being proximal and distal to the quiescent center, respectively.1 The diversity in dividing cells in the root tip provides an opportunity for testing whether the spindles also exhibit diversity in morphology. To visualize the spindles at the metaphase stage in the root tip cells, we conducted indirect immunofluorescence labeling of the β-tubulin in single cells prepared from wild-type Arabidopsis (in Col-0 background) root tips as previously described in references 2 and 3. The spindles in cells of different morphologies were then observed under a confocal laser scanning microscope.3 Three types of spindle were detected. The first type (Fig. 1A) was the smallest in width and length and had the most-pointed poles among the three types. The second type (Fig. 1B) was wider and longer than the first type but with less-pointed poles than the first type. The third type (Fig. 1C) was similar in height to the second type but lacked the pointed poles. In fact, the third type is shaped more like a barrel than a spindle. The first type was found in cells narrow in the direction parallel to the equatorial plane of the spindle, a situation opposite to that of the third type whose cells were wide in the equatorial direction. The wide cells containing the barrel-shaped spindles likely belonged to the epidermal layer in the root tip.1 The second type was found in cells intermediate in width. Examples of metaphase spindles morphologically resembling the three types of spindles in Arabidopsis root can also be found in a previous report by Xu et al. even although spindle diversity was not the subject of the report.4 In Xu et al.''s report, type 1- or 2-like metaphase spindles can be identified in Figures 2B and 3A, and type 3-like metaphase spindles can be identified in Figures 1A and 3B. These observations indicate that at least three types of spindles exist in the root cells.Open in a separate windowFigure 1Spindles in wild-type root cells. (A) Type-1 spindle. (B) Type-2 spindle. (C) Type-3 spindle. The spots without fluorescence signals in the middle of the spindles are where the chromosomes were located. Scale bar for all the figures = 20 µm.Open in a separate windowFigure 2Spindles in cyd1 root cells. (A) Type-1 spindle. Arrows indicate the upper and lower boundaries of the cell. (B and C) Two type-2 spindles. (D and E) Two type-3 spindles. (F) DAPI-staining image corresponding to (E), showing chromosomes at the equatorial plane. Scale bar for the images = 20 µm.The above observations suggest that either the cell size or the cell type (shape) might be a factor in the type of spindle found in a specific cell. To further investigate the relationship between cell morphology and spindle morphology, we studied metaphase spindles in root cells of the cytokinesis defective1 (cyd1) mutant.5 Because the root cells in cyd1 were larger than corresponding cells in the wild type, presumably due to abnormal polyploidization prior to the collection of the root cells,5,6 this investigation might reveal a relationship between increasing cell size and altered spindle morphology. A pattern of different spindle types in different cell types similar to that in the wild type was observed in cyd1 (Fig. 2). Figures 2A–C show narrow cells that contained spindles with pointed poles even though the spindles differed in size and focus. Figure 2D shows a barrel-shaped spindle in a wide cell, resembling Figure 1C in overall appearance. The large number of chromosomes at metaphase (more than the diploid number of 10) in Figure 2F indicates that the cells in Figure 2 were polyploid. These figures thus demonstrate that the enlargement in cell size did not alter the pattern of types 1 and 2 spindles in narrow cells, as well as type 3 spindles in wide cells. Moreover, the edges of the spindles in Figure 2B and E were similarly distanced to the cell walls in the equatorial plane, and yet they differ greatly in shape with the former being type 2 and the latter being type 3. This finding argues against that the cell width in the equatorial direction dictates the spindle shape. On the other hand, the cells in Figure 2B and E are obviously of different types. Taken together, these observations suggest that the spindle diversity in both wild type and cyd1 is associated with cell-type diversity.It is unclear whether the different spindle types have different functions in their respective cell types, in addition to the usual role for chromosome segregation. One possibility is that, at the ensuing telophase, the pointed spindles result in compact chromosomal congregation at the poles whereas the barrel-shaped spindles result in loose chromosomal congregation at the poles, which in turn may differentially affect the shape of the subsequently formed daughter nuclei and their organization. Different nuclear shape and organization are likely to be integrated into the processes that confer cell differentiation.  相似文献   

10.
11.

We recently became aware of panel duplications in Supplementary Figures S6 and S7, due to pasting errors of similar flow cytometry images during figure preparation. This concerned the first two panels in the top row of Suppl. Fig S6A; second and third panel in the bottom row of Suppl. Fig S7B; and third and fourth panel in the bottom row of Suppl. Fig S7C.Furthermore, we noted a typographical error in Suppl. Fig S7B (top row, sixth plot), where the indicated percentage was wrongly given as 1.4%, instead of 1.1%. These errors did not change the results or the interpretation of the data. We deeply apologize to the scientific community for any confusion these errors may have caused. The updated appendix is published with this corrigendum.The original FlowJo analysis plots related to the affected figures are published as source data with this corrigendum. Please note that initial labelling of the experiments in these files referred to the official gene name Obfc2b informally as hSSB1, and Obfc2a‐shRNAs as ‘sh1’ and sh4’.Open in a separate windowFigure S6AOriginalOpen in a separate windowFigure S6ACorrectedOpen in a separate windowFigure S7BOriginalOpen in a separate windowFigure S7BCorrectedOpen in a separate windowFigure S7COriginalOpen in a separate windowFigure S7CCorrected  相似文献   

12.

It was with great sorrow that we have learned of the untimely death of our friend, mentor, collaborator, and hero, Dan Tawfik. Danny was a true legend in the field of protein function and evolution. He had an incredibly creative mind and a breadth of knowledge—his interests spanned chemistry and engineering to genetics and evolution—that allowed him to see connections that the rest of us could not. More importantly, he made solving biochemical mysteries fun: He was passionate about his work, and his face lit up with joy whenever he talked about scientific topics that excited him (of which there were a lot). Conversations with Danny made us all smarter by osmosis.Danny’s own evolution in science began with physical organic chemistry and biochemistry. His PhD at the Weizmann Institute of Science, awarded in 1995, was on catalytic antibodies under the supervision of Zelig Eshhar and Michael Sela. It was followed by a highly productive period at the University of Cambridge’s Centre for Protein Engineering, first as a postdoctoral fellow with Alan Fersht and Tony Kirby, and then as a senior researcher. Among his many achievements during his time in Cambridge was the demonstration that off‐the‐shelf proteins—the serum albumins—could rival the best catalytic antibodies in accelerating the Kemp elimination reaction due to non‐specific medium effects. This work was an early example of unexpected catalytic promiscuity, and it sowed the seed for Danny’s later fascination with “esoteric, niche enzymology” that went far beyond convenient model systems.It was also in Cambridge where Danny first realized the power of the then new field of directed evolution, both for biotechnology and for elucidating evolutionary processes. He and Andrew Griffiths pioneered emulsion‐based in vitro compartmentalization. The idea of controlling biochemical reactions in separate aqueous droplets inspired emulsion PCR and next‐generation sequencing technologies, whereas Danny used it to solve a long‐standing problem in directed evolution; in vitro selection techniques had always been good at identifying ligand‐binding proteins, but compartmentalization finally enabled the directed evolution of ultra‐fast catalysts.Danny returned to Israel in 2001 to join the faculty of the Weizmann Institute of Science where his scientific trajectory further evolved, diverged, and even “drifted”. He developed new methods for enzyme engineering and applied his evolutionary insights into de novo protein design efforts. In this context, Danny’s interest was always focused on how proteins evolve, particularly the connection between promiscuity, conformational diversity, and evolvability. His depth of understanding underpinned both applied research, such as engineering enzymes to detoxify nerve agents, and fundamental research, such as the evolution of enzymes from non‐catalytic scaffolds.Through it all, Danny retained his sense of joy and wonder at the “beautiful aspects of Nature’s chemistry”. This includes his discovery of an exquisite molecular specificity mechanism mediated by a single, short H‐bond that enables microbes to scavenge phosphate in arsenate‐rich environments. In recent years, he deciphered the biosynthetic mechanism of dimethyl sulfide, “the smell of the sea”, and homed in on the interplay between the evolution of an enzyme, its host organism, and environmental complexity. His insights into how the first proteins emerged caused tremendous excitement in the field. He established the roots of two common enzyme lineages, the Rossmann and P‐loop NTPases, as simple polypeptides, and suggested ornithine as the first cationic amino acid. Prior to his death, he published the results of another tour de force: evidence that the first organisms to utilize oxygen may have appeared much earlier than thought.His work impacted many research fields, and he won many significant awards. Most recently, Danny was awarded the EMET Prize for Art, Science and Culture (2020), informally dubbed “Israel’s Nobel Prize”. He was an active and valued member of the EMBO community, having been elected in 2009, and, until his passing, served on the Editorial Advisory Board of EMBO Reports.Danny was also a superb science communicator. Both his research articles and reviews are a joy to read. What stood out just as much as his brilliance was his personality, as he embodied the Yiddish concept of being a true “mensch”. Danny was humble, was down‐to‐earth, and treated all his colleagues—including the most junior members of our research teams—as equals. He championed the careers of others, both those who worked directly for him and those who were lucky enough to be “just” his friends and collaborators. He believed in us even when we did not believe in ourselves, and he was always there to answer questions both scientific and professional. While he loved to share his own ideas, he would be just as excited about ours. Despite his own busy schedule, he always found the time to help others. He was also excellent company, with a great, very dry, sense of humor, and endless interesting stories, including from his own colorful life. In the days after his untimely death, an often‐repeated phrase was “he was my best friend”. Danny’s former group members have gone on to be highly successful in both industry and academia, including more than 15 former doctoral and postdoctoral researchers who are now faculty. The network of researchers Danny has trained, mentored, or influenced is broad, and this legacy is testament to his qualities as both a scientist and a person.Danny was born in Jerusalem to an Iraqi Jewish family, and his Arabic Jewish identity was important to him. He believed strongly in coexistence and peace, and very much valued the Arabic part of his heritage. In his own words: “I am an Israeli, a Jew, an Arab, but first and foremost a human being”. He would often speak of the achievements of his children with immense pride. Danny also had a passion for being outdoors, especially climbing and hiking—when the best discussions were often to be had (Fig (Fig1).1). One of the easiest ways to persuade him to come for a seminar, a collaborative visit, or a conference was to have access to high‐quality climbing in the area. He passed away in a tragic rock‐climbing accident, doing what he loved most outside of science. Our thoughts are with his partner Ita and his children, and we join the much broader community of friends, collaborators, and colleagues whose hearts are broken by his sudden loss.Open in a separate windowFigure 1Dan Salah Tawfik (1955–2021)Photo courtesy of Prof. Joel Mackay, The University of Sydney.  相似文献   

13.

Correction to: EMBO Reports (2019) 20: e47074. DOI 10.15252/embr.201847074 | Published online 6 May 2019The authors noticed that the control and disease labels had been inverted in their data analysis resulting in publication of incorrect data in Figure 1C. The corrected figure is displayed below. This change affects the conclusions as detailed below. The authors apologize for this error and any confusion it may have caused.In the legend of 1C, change from, “Differential gene expression analysis of pediatric ileal CD patient samples (n = 180) shows increased (> 4‐fold) IMP1 expression as compared to non‐inflammatory bowel disease (IBD) pediatric samples (n = 43)”.Open in a separate windowFigure 1CCorrected Open in a separate windowFigure 1COriginal To, "Differential gene expression analysis of pediatric ileal CD patient samples (n = 180) shows decreased (> 4‐fold) IMP1 expression as compared to non‐inflammatory bowel disease (IBD) pediatric samples (n = 43)”.In abstract, change from, “Here, we report increased IMP1 expression in patients with Crohn''s disease and ulcerative colitis”.To, “Here, we report increased IMP1 expression in adult patients with Crohn''s disease and ulcerative colitis”.In results, change from, “Consistent with these findings, analysis of published the Pediatric RISK Stratification Study (RISK) cohort of RNA‐sequencing data 38 from pediatric patients with Crohn''s disease (CD) patients revealed that IMP1 is upregulated significantly compared to control patients and that this effect is specific to IMP1 (i.e., other distinct isoforms, IMP2 and IMP3, are not changed; Fig 1C)”.To, “Contrary to our findings in colon tissue from adults, analysis of published RNA‐sequencing data from the Pediatric RISK Stratification Study (RISK) cohort of ileal tissue from children with Crohn’s disease (CD) 38 revealed that IMP1 is downregulated significantly compared to control patients in the RISK cohort and that this effect is specific to IMP1 (i.e., other distinct isoforms, IMP2 and IMP3, are not changed; Fig 1C)”.In discussion, change from, “Indeed, we report that IMP1 is upregulated in patients with Crohn''s disease and ulcerative colitis and that mice with Imp1 loss exhibit enhanced repair following DSS‐mediated damage”.To “Indeed, we report that IMP1 is upregulated in adult patients with Crohn''s disease and ulcerative colitis and that mice with Imp1 loss exhibit enhanced repair following DSS‐mediated damage”.  相似文献   

14.
The deep ocean greater than 1 km covers the majority of the earth''s surface. Interspersed on the abyssal plains and continental slope are an estimated 14000 seamounts, topographic features extending 1000 m off the seafloor. A variety of hypotheses are posited that suggest the ecological, evolutionary, and oceanographic processes on seamounts differ from those governing the surrounding deep sea. The most prominent and oldest of these hypotheses, the seamount endemicity hypothesis (SMEH), states that seamounts possess a set of isolating mechanisms that produce highly endemic faunas. Here, we constructed a faunal inventory for Davidson Seamount, the first bathymetric feature to be characterized as a ‘seamount’, residing 120 km off the central California coast in approximately 3600 m of water (Fig 1). We find little support for the SMEH among megafauna of a Northeast Pacific seamount; instead, finding an assemblage of species that also occurs on adjacent continental margins. A large percentage of these species are also cosmopolitan with ranges extending over much of the Pacific Ocean Basin. Despite the similarity in composition between the seamount and non-seamount communities, we provide preliminary evidence that seamount communities may be structured differently and potentially serve as source of larvae for suboptimal, non-seamount habitats.Open in a separate windowFigure 1Bathymetric map of the Central California Coast with Monterey Canyon and Davidson Seamount.  相似文献   

15.
A new species of Stenoloba from the olivacea species group, Stenoloba solaris, sp. n. (Lepidoptera, Noctuidae), is described from Yunnan, China. Illustrations of the male holotype and its genitalia are provided. A diagnostic comparison is made with Stenoloba albistriata Kononenko & Ronkay, 2000, Stenoloba olivacea (Wileman, 1914), and Stenoloba benedeki Ronkay, 2001 (Fig. 4).Open in a separate windowFigures 1–5.Stenoloba spp. adults and biotope. 1 Stenoloba solaris, sp. n., male, holotypus, Yunnan, China (GBG/ZSM) 2 Stenoloba albistriata, male, paratypus, N. Vietnam (ZFMK) 3 Stenoloba olivacea, male, Taiwan (HNHM) 4 Stenoloba benedeki, male, paratypus, N. Vietnam (HNHM) 5 Type locality of Stenoloba solaris, sp. n. China, NW Yunnan, Lijiang/Zhongdian near Tuguancum, 27°29''700"N, 99°53''700"E.  相似文献   

16.
It is well established that MDCK II cells grow in circular colonies that densify until contact inhibition takes place. Here, we show that this behavior is only typical for colonies developing on hard substrates and report a new growth phase of MDCK II cells on soft gels. At the onset, the new phase is characterized by small, three-dimensional droplets of cells attached to the substrate. When the contact area between the agglomerate and the substrate becomes sufficiently large, a very dense monolayer nucleates in the center of the colony. This monolayer, surrounded by a belt of three-dimensionally packed cells, has a well-defined structure, independent of time and cluster size, as well as a density that is twice the steady-state density found on hard substrates. To release stress in such dense packing, extrusions of viable cells take place several days after seeding. The extruded cells create second-generation clusters, as evidenced by an archipelago of aggregates found in a vicinity of mother colonies, which points to a mechanically regulated migratory behavior.Studying the growth of cell colonies is an important step in the understanding of processes involving coordinated cell behavior such as tissue development, wound healing, and cancer progression. Apart from extremely challenging in vivo studies, artificial tissue models are proven to be very useful in determining the main physical factors that affect the cooperativity of cells, simply because the conditions of growth can be very well controlled. One of the most established cell types in this field of research is the Madin-Darby canine kidney epithelial cell (MDCK), originating from the kidney distal tube (1). A great advantage of this polarized epithelial cell line is that it retained the ability for contact inhibition (2), which makes it a perfect model system for studies of epithelial morphogenesis.Organization of MDCK cells in colonies have been studied in a number of circumstances. For example, it was shown that in three-dimensional soft Matrigel, MDCK cells form a spherical enclosure of a lumen that is enfolded by one layer of polarized cells with an apical membrane exposed to the lumen side (3). These structures can be altered by introducing the hepatocyte growth factor, which induces the formation of linear tubes (4). However, the best-studied regime of growth is performed on two-dimensional surfaces where MDCK II cells form sheets and exhibit contact inhibition. Consequently, the obtained monolayers are well characterized in context of development (5), mechanical properties (6), and obstructed cell migration (7–9).Surprisingly, in the context of mechanics, several studies of monolayer formation showed that different rigidities of polydimethylsiloxane gels (5) and polyacrylamide (PA) gels (9) do not influence the nature of monolayer formation nor the attainable steady-state density. This is supposedly due to long-range forces between cells transmitted by the underlying elastic substrate (9). These results were found to agree well with earlier works on bovine aortic endothelial cells (10) and vascular smooth muscle cells (11), both reporting a lack of sensitivity of monolayers to substrate elasticity. Yet, these results are in stark contrast with single-cell experiments (12–15) that show a clear response of cell morphology, focal adhesions, and cytoskeleton organization to substrate elasticity. Furthermore, sensitivity to the presence of growth factors that are dependent on the elasticity of the substrate in two (16) and three dimensions (4) makes this result even more astonishing. Therefore, we readdress the issue of sensitivity of tissues to the elasticity of the underlying substrate and show that sufficiently soft gels induce a clearly different tissue organization.We plated MDCK II cells on soft PA gels (Young’s modulus E = 0.6 ± 0.2 kPa), harder PA gels (E = 5, 11, 20, 34 kPa), and glass, all coated with Collagen-I. Gels were prepared following the procedure described in Rehfeldt et al. (17); rigidity and homogeneity of the gels was confirmed by bulk and microrheology (see the Supporting Material for comparison). Seeding of MDCK II cells involved a highly concentrated solution dropped in the middle of a hydrated gel or glass sample. For single-cell experiments, cells were dispersed over the entire dish. Samples were periodically fixed up to Day 12, stained for nuclei and actin, and imaged with an epifluorescence microscope. Details are described in the Supporting Material.On hard substrates and glass it was found previously that the area of small clusters expands exponentially until the movement of the edge cannot keep up with the proliferation in the bulk (5). Consequently, the bulk density increases toward the steady state, whereas the density of the edge remains low. At the same time, the colony size grows subexponentially (5). This is what we denote “the classical regime of growth”. Our experiments support these observations for substrates with E ≥ 5 kPa. Specifically, on glass, colonies start as small clusters of very low density of 700 ± 200 cells/mm2 (Fig. 1, A and B), typically surrounded by a strong actin cable (Fig. 1, B and C). Interestingly, the spreading area of single cells (Fig. 1 A) on glass was found to be significantly larger, i.e., (2.0 ± 0.9) × 10−3 mm2. After Day 4 (corresponding cluster area of 600 ± 100 mm2), the density in the center of the colony reached the steady state with 6,800 ± 500 cells/mm2, whereas the mean density of the edge profile grew to 4,000 ± 500 cells/mm2. This density was retained until Day 12 (cluster area 1800 ± 100 mm2), which is in agreement with previous work (9).Open in a separate windowFigure 1Early phase of cluster growth on hard substrates. (A) Well-spread single cells, and small clusters with a visible actin cable 6 h after seeding. (B) Within one day, clusters densify and merge, making small colonies. (C) Edge of clusters from panel B.In colonies grown on 0.6 kPa gels, however, we encounter a very different growth scenario. The average spreading area of single cells is (0.34 ± 0.3) × 10−3 mm2, which is six times smaller than on glass substrates (Fig. 2 A). Clusters of only few cells show that cells have a preference for cell-cell contacts (a well-established flat contact zone can be seen at the cell-cell interface in Fig. 2 A) rather than for cell-substrate contacts (contact zone is diffusive and the shape of the cells appears curved). The same conclusion emerges from the fact that dropletlike agglomerates, resting on the substrate, form spontaneously (Fig. 2 A), and that attempts to seed one single cluster of 90,000 cells fail, resulting in a number of three-dimensional colonies (Fig. 2 A). When the contact area with the substrate exceeds 4.7 × 10−3 mm2, a monolayer appears in the center of such colonies (Fig. 2 B). The colonies can merge, and if individual colonies are small, the collapse into a single domain is associated with the formation of transient irregular structures (Fig. 2 B). Ultimately, large elliptical colonies (average major/minor axis of e = 1.8 ± 0.6) with a smooth edge are formed (Fig. 2 C), unlike on hard substrates where circular clusters (e = 1.06 ± 0.06) with a ragged edge comprise the characteristic phenotype.Open in a separate windowFigure 2Early phase of cluster growth on soft substrates. (A) Twelve hours after seeding, single cells remain mostly round and small. They are found as individual, or within small, three-dimensional structures (top). The latter nucleate a monolayer in their center (bottom), if the contact area with the substrate exceeds ∼5 × 10−3 mm2. (B) Irregularly-shaped clusters appear due to merging of smaller droplets. A stable monolayer surrounded by a three-dimensional belt of densely packed cells is clearly visible, even in larger structures. (C) All colonies are recorded on Day 4.Irrespective of cluster size, in the new regime of growth, the internal structure is built of two compartments (Fig. 2 B):
  • 1.The first is the edge (0.019 ± 0.05-mm wide), a three-dimensional structure of densely packed cells. This belt is a signature of the new regime because on hard substrates the edge is strictly two-dimensional (Fig. 1 C).
  • 2.The other is the centrally placed monolayer with a spatially constant density that is very weakly dependent on cluster size and age (Fig. 3). The mean monolayer density is 13,000 ± 2,000 cells/mm2, which is an average over 130 clusters that are up to 12 days old and have a size in the range of 10−3 to 10 mm2, each shown by a data point in Fig. 3. This density is twice the steady-state density of the bulk tissue in the classical regime of growth.Open in a separate windowFigure 3Monolayer densities in colonies grown on 0.6 kPa substrates, as a function of the cluster size and age. Each cluster is represented by a single data point signifying its mean monolayer density. (Black lines) Bulk and (red dashed lines) edge of steady-state densities from monolayers grown on glass substrates. Error bars are omitted for clarity, but are discussed in the Supporting Material.
Until Day 4, the monolayer is very homogeneous, showing a nearly hexagonal arrangement of cells. From Day 4, however, defects start to appear in the form of small holes (typical size of (0.3 ± 0.1) × 10−3 mm2). These could be attributed to the extrusions of viable cells, from either the belt or areas of increased local density in the monolayer (inset in Fig. 4). This suggests that extrusions serve to release stress built in the tissue, and, as a consequence, the overall density is decreased.Open in a separate windowFigure 4Cell nuclei within the mother colony and in the neighboring archipelago of second-generation clusters grown on 0.6 kPa gels at Day 12. (Inset; scale bar = 10 μm) Scar in the tissue, a result of a cell-extrusion event. (Main image; scale bar = 100 μm) From the image of cell nuclei (left), it is clear that there are no cells within the scar, whereas the image of actin (right) shows that the cytoplasm of the cells at the edge has closed the hole.Previous reports suggest that isolated MDCK cells undergo anoikis 8 h after losing contact with their neighbors (18). However, in this case, it appears that instead of dying, the extruded cells create new colonies, which can be seen as an archipelago surrounding the mother cluster (Fig. 4). The viability of off-cast cells is further evidenced by the appearance of single cells and second-generation colonies with sizes varying over five orders of magnitude, from Day 4 until the end of the experiment, Day 12. Importantly, no morphological differences were found in the first- and second-generation colonies.In conclusion, we show what we believe to be a novel phase of growth of MDCK model tissue on soft PA gels (E = 0.6 kPa) that, to our knowledge, despite previous similar efforts (9), has not been observed before. This finding is especially interesting in the context of elasticity of real kidneys, for which a Young’s modulus has been found to be between 0.05 and 5 kPa (19,20). This coincides with the elasticity of substrates studied herein, and opens the possibility that the newly found phase of growth has a particular biological relevance. Likewise, the ability to extrude viable cells may point to a new migratory pathway regulated mechanically by the stresses in the tissue, the implication of which we hope to investigate in the future.  相似文献   

17.
With increasing intracellular complexity, a new cell-biological problem that is the allocation of cytoplasmically synthesized proteins to their final destinations within the cell emerged. A special challenge is thereby the translocation of proteins into or across cellular membranes. The underlying mechanisms are only in parts well understood, but it can be assumed that the course of cellular evolution had a deep impact on the design of the required molecular machines. In this article, we aim to summarize the current knowledge and concepts of the evolutionary development of protein trafficking as a necessary premise and consequence of increased cellular complexity.
The evolution of modern cells is arguably the most challenging and important problem the field of biology has ever faced …—Carl R. Woese(Woese 2002)
Current models may accept that all modern eukaryotic cells arose from a single common ancestor (the cenancestral eukaryote), the nature of which is—owing to the lack of direct living or fossil descendants—still highly under debate (de Duve 2007). The chimeric nature of eukaryotic genomes with eubacterial and archaebacterial shares led to a discussion about the origin of this first “proto-eukaryote.” Several models exist (see Fig. 1), which either place the evolution of the nucleus before or after the emergence of the mitochondrion (outlined in Koonin 2010; Martijn and Ettema 2013). According to the different postulated scenarios (summarized in Embley and Martin 2006), eukaryotes in the latter case might have evolved by endosymbiosis between a hydrogen-producing, oxygen-producing, or sulfur-dependent α-proteobacterium and an archaebacterial host (Fig. 1C). The resulting mitochondriate prokaryote would have evolved the nucleus subsequently. In other scenarios (Fig. 1B), the cenancestral eukaryote emerged by cellular fusion or endosymbiosis of a Gram-negative, maybe hydrogen-producing, eubacterium and a methanogenic archaebacterium or eocyte, leading to a primitive but nucleated amitochondrial (archezoan) cell (Embley and Martin 2006, and references therein). As a third alternative, Cavalier-Smith (2002) suggested a common eubacterial ancestor for eukaryotes and archaebacteria (the Neomuran hypothesis) (Fig. 1A).Open in a separate windowFigure 1.Evolution of the last common ancestor of all eukaryotic cells. A schematic depiction of the early eukaryogenesis. Because of the lack of living and fossil descendants, several opposing models are discussed (A–C). The anticipated order of events is shown as a flow chart. For details, see text. (Derived from Embley and Martin 2006; Koonin 2010.)  相似文献   

18.
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.All ribosomes are composed of two subunits, both of which are built from RNA and protein (Figs. (Figs.11 and and2).2). Bacterial ribosomes, for example of Escherichia coli, contain a small subunit (SSU) composed of one 16S ribosomal RNA (rRNA) and 21 ribosomal proteins (r-proteins) (Figs. (Figs.1A1A and and1B)1B) and a large subunit (LSU) containing 5S and 23S rRNAs and 33 r-proteins (Fig. 2A). Crystal structures of prokaryotic ribosomal particles, namely, the Thermus thermophilus SSU (Schluenzen et al. 2000; Wimberly et al. 2000), Haloarcula marismortui and Deinococcus radiodurans LSU (Ban et al. 2000; Harms et al. 2001), and E. coli and T. thermophilus 70S ribosomes (Yusupov et al. 2001; Schuwirth et al. 2005; Selmer et al. 2006), reveal the complex architecture that derives from the network of interactions connecting the individual r-proteins with each other and with the rRNAs (Brodersen et al. 2002; Klein et al. 2004). The 16S rRNA can be divided into four domains, which together with the r-proteins constitute the structural landmarks of the SSU (Wimberly et al. 2000) (Fig. 1A): The 5′ and 3′ minor (h44) domains with proteins S4, S5, S12, S16, S17, and S20 constitute the body (and spur or foot) of the SSU; the 3′ major domain forms the head, which is protein rich, containing S2, S3, S7, S9, S10, S13, S14, and S19; whereas the central domain makes up the platform by interacting with proteins S1, S6, S8, S11, S15, and S18 (Fig. 1B). The rRNA of the LSU can be divided into seven domains (including the 5S rRNA as domain VII), which—in contrast to the SSU—are intricately interwoven with the r-proteins as well as each other (Ban et al. 2000; Brodersen et al. 2002) (Fig. 2A). Structural landmarks on the LSU include the central protuberance (CP) and the flexible L1 and L7/L12 stalks (Fig. 2A).Open in a separate windowFigure 1.The bacterial and eukaryotic small ribosomal subunit. (A,B) Interface (upper) and solvent (lower) views of the bacterial 30S subunit (Jenner et al. 2010a). (A) 16S rRNA domains and associated r-proteins colored distinctly: b, body (blue); h, head (red); pt, platform (green); and h44, helix 44 (yellow). (B) 16S rRNA colored gray and r-proteins colored distinctly and labeled. (CE) Interface and solvent views of the eukaryotic 40S subunit (Rabl et al. 2011), with (C) eukaryotic-specific r-proteins (red) and rRNA (pink) shown relative to conserved rRNA (gray) and r-proteins (blue), and with (D,E) 18S rRNA colored gray and r-proteins colored distinctly and labeled.Open in a separate windowFigure 2.The bacterial and eukaryotic large ribosomal subunit. (A) Interface (upper) and solvent (lower) views of the bacterial 50S subunit (Jenner et al. 2010b), with 23S rRNA domains and bacterial-specific (light blue) and conserved (blue) r-proteins colored distinctly: cp, central protuberance; L1, L1 stalk; and St, L7/L12 stalk (or P-stalk in archeaa/eukaryotes). (BE) Interface and solvent views of the eukaryotic 60S subunit (Klinge et al. 2011), with (B) eukaryotic-specific r-proteins (red) and rRNA (pink) shown relative to conserved rRNA (gray) and r-proteins (blue), (C) eukaryotic-specific expansion segments (ES) colored distinctly, and (D,E) 28S rRNA colored gray and r-proteins colored distinctly and labeled.In contrast to their bacterial counterparts, eukaryotic ribosomes are much larger and more complex, containing additional rRNA in the form of so-called expansion segments (ES) as well as many additional r-proteins and r-protein extensions (Figs. 1C–E and and2C–E).2C–E). Compared with the ∼4500 nucleotides of rRNA and 54 r-proteins of the bacterial 70S ribosome, eukaryotic 80S ribosomes contain >5500 nucleotides of rRNA (SSU, 18S rRNA; LSU, 5S, 5.8S, and 25S rRNA) and 80 (79 in yeast) r-proteins. The first structural models for the eukaryotic (yeast) ribosome were built using 15-Å cryo–electon microscopy (cryo-EM) maps fitted with structures of the bacterial SSU (Wimberly et al. 2000) and archaeal LSU (Ban et al. 2000), thus identifying the location of a total of 46 eukaryotic r-proteins with bacterial and/or archaeal homologs as well as many ES (Spahn et al. 2001a). Subsequent cryo-EM reconstructions led to the localization of additional eukaryotic r-proteins, RACK1 (Sengupta et al. 2004) and S19e (Taylor et al. 2009) on the SSU and L30e (Halic et al. 2005) on the LSU, as well as more complete models of the rRNA derived from cryo-EM maps of canine and fungal 80S ribosomes at ∼9 Å (Chandramouli et al. 2008; Taylor et al. 2009). Recent cryo-EM reconstructions of plant and yeast 80S translating ribosomes at 5.5–6.1 Å enabled the correct placement of an additional six and 10 r-proteins on the SSU and LSU, respectively, as well as the tracing of many eukaryotic-specific r-protein extensions (Armache et al. 2010a,b). The full assignment of the r-proteins in the yeast and fungal 80S ribosomes, however, only became possible with the improved resolution (3.0–3.9 Å) resulting from the crystal structures of the SSU and LSU from Tetrahymena thermophila (Klinge et al. 2011; Rabl et al. 2011) and the Saccharomyces cerevisiae 80S ribosome (Figs. (Figs.1D,E1D,E and and2D,E)2D,E) (Ben-Shem et al. 2011).  相似文献   

19.
20.
Glutathione (GSH) has widely been known to be a multifunctional molecule especially as an antioxidant up until now, but has found a new role in plant defense signaling. Research from the past three decades indicate that GSH is a player in pathogen defense in plants, but the mechanism underlying this has not been elucidated fully. We have recently shown that GSH acts as a signaling molecule and mitigates biotic stress through non-expressor of PR genes 1 (NPR1)-dependent salicylic acid (SA)-mediated pathway. Transgenic tobacco with enhanced level of GSH (NtGB lines) was found to synthesize more SA, was capable of enhanced expression of genes belonging to NPR1-dependent SA-mediated pathway, were resistant to Pseudomonas syringae, the biotrophic pathogen and many SA-related proteins were upregulated. These results gathered experimental evidence on the mechanism through which GSH combats biotic stress. In continuation with our previous investigation we show here that the expression of glutathione S-transferase (GST), the NPR1-independent SA-mediated gene was unchanged in transgenic tobacco with enhanced level of GSH as compared to wild-type plants. Additionally, the transgenic plants were barely resistant to Botrytis cinerea, the necrotrophic pathogen. SA-treatment led to enhanced level of expression of pathogenesis-related protein gene (PR1) and PR4 as against short-chain dehydrogenase/reductase family protein (SDRLP) and allene oxide synthase (AOS). These data provided significant insight into the involvement of GSH in NPR1-dependent SA-mediated pathway in mitigating biotic stress.Key words: GSH, signaling molecule, biotrophic pathogen, NPR-1, PR-1, PR-4, transgenic tobaccoPlant responses to different environmental stresses are achieved through integrating shared signaling networks and mediated by the synergistic or antagonistic interactions with the phytohormones viz. SA, jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and reactive oxygen species (ROS).1 Previous studies have shown that in response to pathogen attack, plants produce a highly specific blend of SA, JA and ET, resulting in the activation of distinct sets of defense-related genes.2,3 Regulatory functions for ROS in defense, with a focus on the response to pathogen infection occur in conjunction with other plant signaling molecules, particularly with SA and nitric oxide (NO).46 Till date, numerous physiological functions have been attributed to GSH in plants.711 In addition to previous studies, recent study has also shown that GSH acts as a signaling molecule in combating biotic stress through NPR1-dependent SA-mediated pathway.12,13Our recent investigation involved raising of transgenic tobacco overexpressing gamma-glutamylcysteine synthetase (γ-ECS), the rate-limiting enzyme of the GSH biosynthetic pathway.12 The stable integration and enhanced expression of the transgene at the mRNA as well as protein level was confirmed by Southern blot, quantitative RT-PCR and western blot analysis respectively. The transgenic plants of the T2 generation (Fig. 1), the phenotype of which was similar to that of wild-type plants were found to be capable of synthesizing enhanced amount of GSH as confirmed by HPLC analysis.Open in a separate windowFigure 1Transgenic tobacco of T2 generation, (A) three-week-old plant, (B) mature plant.In the present study, the expression profile of GST was analyzed in NtGB lines by quantitative RT-PCR (qRT-PCR) and found that the expression level of this gene is unchanged in NtGB lines as compared to wild-type plants (Fig. 2). GST is known to be a NPR1-independent SA-related gene.14 This suggests that GSH does not follow the NPR1-independent SA-mediated pathway in defense signaling.Open in a separate windowFigure 2Expression pattern of GST in wild-type and NtGB lines.Disease test assay with NtGB lines and wild-type plants was performed using B. cinerea and the NtGB lines showed negligible rate of resistance to this necrotrophic pathogen (Fig. 3). SA signaling has been known to control defense against biotrophic pathogen in contrast, JA/ET signaling controls defense against necrotrophic pathogen.1,15 Thus it has again been proved that GSH is not an active member in the crosstalk of JA-mediated pathway, rather it follows the SA-mediated pathway as has been evidenced earlier.12Open in a separate windowFigure 3Resistance pattern of wild-type and NtGB lines against Botrytis cinerea.Additionally, the leaves of wild-type and NtGB lines were treated with 1 mM SA and the expression of PR1, SDRLP, AOS and PR4 genes were analyzed and compared to untreated plants to simulate pathogen infection. The expression of PR1 increased after exogenous application of SA. In case of PR4, the ET marker, the expression level increased in NtGB lines. On the other hand, the level of SDRLP was nearly the same. However, the expression of AOS was absent in SA-treated leaves (Fig. 4). PR1 has been known to be induced by SA-treatment16 which can be corroborated with our results. In addition, ET is known to enhance SA/NPR1-dependent defense responses,17 which was reflected in our study as well. AOS, the biosynthetic pathway gene of JA, further known to be the antagonist of SA, was downregulated in SA-treated plants.Open in a separate windowFigure 4Gene expression pattern of PR1, SDRLP, PR4 and AOS in untreated and SA-treated wildtype and NtGB lines.Taken together, it can be summarized that this study provided new evidence on the involvement of GSH with SA in NPR1-dependent manner in combating biotic stress. Additionally, it can be claimed that GSH is a signaling molecule which takes an active part in the cross-communication with other established signaling molecules like SA, JA, ET in induced defense responses and has an immense standpoint in plant defense signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号