首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe continued occurrence of more contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants and waning immunity over time require ongoing reevaluation of the vaccine effectiveness (VE). This study aimed to estimate the effectiveness in 2 age groups (12 to 59 and 60 years or above) of 2 or 3 vaccine doses (BNT162b2 mRNA or mRNA-1273) by time since vaccination against SARS-CoV-2 infection and Coronavirus Disease 2019 (COVID-19) hospitalization in an Alpha-, Delta-, or Omicron-dominated period.Methods and findingsA Danish nationwide cohort study design was used to estimate VE against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha, Delta, or Omicron variant. Information was obtained from nationwide registries and linked using a unique personal identification number. The study included all previously uninfected residents in Denmark aged 12 years or above (18 years or above for the analysis of 3 doses) in the Alpha (February 20 to June 15, 2021), Delta (July 4 to November 20, 2021), and Omicron (December 21, 2021 to January 31, 2022) dominated periods. VE estimates including 95% confidence intervals (CIs) were calculated (1-hazard ratio∙100) using Cox proportional hazard regression models with underlying calendar time and adjustments for age, sex, comorbidity, and geographical region. Vaccination status was included as a time-varying exposure. In the oldest age group, VE against infection after 2 doses was 90.7% (95% CI: 88.2; 92.7) for the Alpha variant, 82.3% (95% CI: 75.5; 87.2) for the Delta variant, and 39.9% (95% CI: 26.3; 50.9) for the Omicron variant 14 to 30 days since vaccination. The VE waned over time and was 73.2% (Alpha, 95% CI: 57.1; 83.3), 50.0% (Delta, 95% CI: 46.7; 53.0), and 4.4% (Omicron, 95% CI: −0.1; 8.7) >120 days since vaccination. Higher estimates were observed after the third dose with VE estimates against infection of 86.1% (Delta, 95% CI: 83.3; 88.4) and 57.7% (Omicron, 95% CI: 55.9; 59.5) 14 to 30 days since vaccination. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 98.1% or above for the Alpha and Delta variants. Among both age groups, VE against COVID-19 hospitalization 14 to 30 days since vaccination with 2 or 3 doses was 95.5% or above for the Omicron variant. The main limitation of this study is the nonrandomized study design including potential differences between the unvaccinated (reference group) and vaccinated individuals.ConclusionsTwo vaccine doses provided high protection against SARS-CoV-2 infection and COVID-19 hospitalization with the Alpha and Delta variants with protection, notably against infection, waning over time. Two vaccine doses provided only limited and short-lived protection against SARS-CoV-2 infection with Omicron. However, the protection against COVID-19 hospitalization following Omicron SARS-CoV-2 infection was higher. The third vaccine dose substantially increased the level and duration of protection against infection with the Omicron variant and provided a high level of sustained protection against COVID-19 hospitalization among the +60-year-olds.

Mie Agermose Gram and colleagues estimate vaccine effectiveness against infection and COVID-19 hospitalization with the Alpha, Delta or Omicron variant in Denmark.  相似文献   

2.
The Coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2), has impacted human lives in the most profound ways with millions of infections and deaths. Scientists and pharmaceutical companies have been in race to produce vaccines against SARS-CoV-2. Vaccine generation usually demands years of developing and testing for efficacy and safety. However, it only took less than one year to generate two mRNA vaccines from their development to deployment. The rapid production time, cost-effectiveness, versatility in vaccine design, and clinically proven ability to induce cellular and humoral immune response have crowned mRNA vaccines with spotlights as most promising vaccine candidates in the fight against the pandemic. In this review, we discuss the general principles of mRNA vaccine design and working mechanisms of the vaccines, and provide an up-to-date summary of pre-clinical and clinical trials on seven anti-COVID-19 mRNA candidate vaccines, with the focus on the two mRNA vaccines already licensed for vaccination. In addition, we highlight the key strategies in designing mRNA vaccines to maximize the expression of immunogens and avoid intrinsic innate immune response. We also provide some perspective for future vaccine development against COVID-19 and other pathogens.  相似文献   

3.
Vaccines are proving to be highly effective in controlling hospitalization and deaths associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as shown by clinical trials and real-world evidence. However, a deadly second wave of coronavirus disease 2019 (COVID-19), infected by SARS-CoV-2 variants, especially the Delta (B.1.617.2) variant, with an increased number of post-vaccination breakthrough infections were reported in the world recently. Actually, Delta variant not only resulted in a severe surge of vaccine breakthrough infections which was accompanied with high viral load and transmissibility, but also challenged the development of effective vaccines. Therefore, the biological characteristics and epidemiological profile of Delta variant, the current status of Delta variant vaccine breakthrough infections and the mechanism of vaccine breakthrough infections were discussed in this article. In addition, the significant role of the Delta variant spike (S) protein in the mechanism of immune escape of SARS-CoV-2 was highlighted in this article. In particular, we further discussed key points on the future SARS-CoV-2 vaccine research and development, hoping to make a contribution to the early, accurate and rapid control of the COVID-19 epidemic.  相似文献   

4.
With emerging SARS-CoV-2 variants, vaccines approved so far are under scrutiny for long term effectiveness against the circulating strains. There is a prevalent obsession with humoral immunity as in vitro studies have indicated diminished effects of vaccine-induced neutralizing antibodies. However, this need not clinically translate to vaccine resistance as immune response against all forms of present vaccine preparations is T dependent unlike that against native viral particles which can induce T independent immune responses. Thus, we focused on this major correlate of protection against infections, T cell response. Using bioinformatics tools, we analyzed SARS-CoV-2 Spike protein T cell epitopes and their diversity across Delta plus/B.1.617.2.1, Gamma/P.1 (variant of concern), B.1.1.429, Zeta/P.2 and Mink cluster 5/B.1.1.298 variants as well as Omicron/B.1.1.529 (variant of concern). We also compared HLA restriction profiles of the mutant epitopes with that of the native epitopes (from Wuhan_hu_1 strain, used in vaccine formulations). Our observations show ~90% conservation of CD4+ and CD8+ epitopes across Delta plus/B.1.617.2.1, Gamma/P.1 (variant of concern), B.1.1.429, Zeta/P.2 and Mink cluster 5/B.1.1.298. For the Omicron/B.1.1.529 variant, ~75% of CD4+ and ~ 87% CD8+ epitopes were conserved. Majority of the mutated CD4+ and CD8+ epitopes of this variant were predicted to retain the HLA restriction pattern as their native epitopes. The results of our bioinformatics analysis suggest largely conserved T cell responses across the studied variants, ability of T cells to tackle new SARS-CoV-2 variants and aid in protection from COVID-19 post vaccination. In conclusion, the results suggest that current vaccines may not be rendered completely ineffective against new variants.  相似文献   

5.
The coronavirus disease 19 (COVID-19) has been rampant since 2019, severely affecting global public health, and causing 5.75 million deaths worldwide. So far, many vaccines have been developed to prevent the infection of SARS-CoV-2 virus. However, the emergence of new variants may threat vaccine recipients as they might evade immunological surveillance that depends on the using of anti-SARS-CoV-2 antibody to neutralize the viral particles. Recent studies have found that recipients who received two doses of vaccination plus an additional booster shoot were able to quickly elevate neutralization response and immune response against wild-type SARS-CoV-2 virus and some initially appeared viral variants. In this review, we assessed the real-world effectiveness of different COVID-19 vaccines by population studies and neutralization assays and compared neutralization responses of booster vaccines in vitro. Finally, as the efficacy of COVID-19 vaccine is expected to decline over time, continued vaccination should be considered to achieve a long-term immune protection against coronavirus.  相似文献   

6.
Rapid development and successful use of vaccines against SARS-CoV-2 might hold the key to curb the ongoing pandemic of COVID-19. Emergence of vaccine-evasive SARS-CoV-2 variants of concern (VOCs) has posed a new challenge to vaccine design and development. One urgent need is to determine what types of variant-specific and bivalent vaccines should be developed. Here, we compared homotypic and heterotypic protection against SARS-CoV-2 infection of hamsters with monovalent and bivalent whole-virion inactivated vaccines derived from representative VOCs. In addition to the ancestral SARS-CoV-2 Wuhan strain, Delta (B.1.617.2; δ) and Theta (P.3; θ) variants were used in vaccine preparation. Additional VOCs including Omicron (B.1.1.529) and Alpha (B.1.1.7) variants were employed in the challenge experiment. Consistent with previous findings, Omicron variant exhibited the highest degree of immune evasion, rendering all different forms of inactivated vaccines substantially less efficacious. Notably, monovalent and bivalent Delta variant-specific inactivated vaccines provided optimal protection against challenge with Delta variant. Yet, some cross-variant protection against Omicron and Alpha variants was seen with all monovalent and bivalent inactivated vaccines tested. Taken together, our findings support the notion that an optimal next-generation inactivated vaccine against SARS-CoV-2 should contain the predominant VOC in circulation. Further investigations are underway to test whether a bivalent vaccine for Delta and Omicron variants can serve this purpose.  相似文献   

7.
The speed of development, versatility and efficacy of mRNA-based vaccines have been amply demonstrated in the case of SARS-CoV-2. DNA vaccines represent an important alternative since they induce both humoral and cellular immune responses in animal models and in human trials. We tested the immunogenicity and protective efficacy of DNA-based vaccine regimens expressing different prefusion-stabilized Wuhan-Hu-1 SARS-CoV-2 Spike antigens upon intramuscular injection followed by electroporation in rhesus macaques. Different Spike DNA vaccine regimens induced antibodies that potently neutralized SARS-CoV-2 in vitro and elicited robust T cell responses. The antibodies recognized and potently neutralized a panel of different Spike variants including Alpha, Delta, Epsilon, Eta and A.23.1, but to a lesser extent Beta and Gamma. The DNA-only vaccine regimens were compared to a regimen that included co-immunization of Spike DNA and protein in the same anatomical site, the latter of which showed significant higher antibody responses. All vaccine regimens led to control of SARS-CoV-2 intranasal/intratracheal challenge and absence of virus dissemination to the lower respiratory tract. Vaccine-induced binding and neutralizing antibody titers and antibody-dependent cellular phagocytosis inversely correlated with transient virus levels in the nasal mucosa. Importantly, the Spike DNA+Protein co-immunization regimen induced the highest binding and neutralizing antibodies and showed the strongest control against SARS-CoV-2 challenge in rhesus macaques.  相似文献   

8.
Children mostly experience mild SARS-CoV-2 infections, but the extent of paediatric COVID-19 disease differs between geographical regions and the distinct pandemic waves. Not all infections in children are mild, some children even show a strong inflammatory reaction resulting in a multisystem inflammatory syndrome. The assessments of paediatric vaccination depend on the efficacy of protection conferred by vaccination, the risk of adverse reactions and whether children contribute to herd immunity against COVID-19. Children were also the target of consequential public health actions such as school closure which caused substantial harm to children (educational deficits, sociopsychological problems) and working parents. It is, therefore, important to understand the transmission dynamics of SARS-CoV-2 infections by children to assess the efficacy of school closures and paediatric vaccination. The societal restrictions to contain the COVID-19 pandemic had additional negative effects on children’s health, such as missed routine vaccinations, nutritional deprivation and lesser mother–child medical care in developing countries causing increased child mortality as a collateral damage. In this complex epidemiological context, it is important to have an evidence-based approach to public health approaches. The present review summaries pertinent published data on the role of children in the pandemic, whether they are drivers or followers of the infection chains and whether they are (after elderlies) major sufferers or mere bystanders of the COVID-19 pandemic.  相似文献   

9.
BackgroundThe recommendations in several countries to stop using the ChAdOx1 vaccine has led to vaccine programs combining different Coronavirus Disease 2019 (COVID-19) vaccine types, which necessitates knowledge on vaccine effectiveness (VE) of heterologous vaccine schedules. The aim of this Danish nationwide population-based cohort study was therefore to estimate the VE against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and COVID-19–related hospitalization and death following the first dose of the ChAdOx1 vaccine and the combination of the ChAdOx1/mRNA vaccines.Methods and findingsAll individuals alive in or immigrating to Denmark from 9 February 2021 to 23 June 2021 were identified in the Danish Civil Registration System. Information on exposure, outcomes, and covariates was obtained from Danish national registries. Poisson and Cox regression models were used to calculate crude and adjusted VE, respectively, along with 95% confidence intervals (CIs) against SARS-CoV-2 infection and COVID-19–related hospitalization or death comparing vaccinated versus unvaccinated individuals. The VE estimates were adjusted for calendar time as underlying time and for sex, age, comorbidity, country of origin, and hospital admission. The analyses included 5,542,079 individuals (97.6% of the total Danish population). A total of 144,360 individuals were vaccinated with the ChAdOx1 vaccine as the first dose, and of these, 136,551 individuals received an mRNA vaccine as the second dose. A total of 1,691,464 person-years and 83,034 SARS-CoV-2 infections were included. The individuals vaccinated with the first dose of the ChAdOx1 vaccine dose had a median age of 45 years. The study population was characterized by an equal distribution of males and females; 6.7% and 9.2% originated from high-income and other countries, respectively. The VE against SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine was 88% (95% CI: 83; 92) 14 days after the second dose and onwards. There were no COVID-19–related hospitalizations or deaths among the individuals vaccinated with the combined vaccine schedule during the study period. Study limitations including unmeasured confounders such as risk behavior and increasing overall vaccine coverage in the general population creating herd immunity are important to take into consideration when interpreting the results.ConclusionsIn this study, we observed a large reduction in the risk of SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine, compared with unvaccinated individuals.

Mie Agermose Gram and co-workers study the effectiveness of heterologous SARS-CoV-2 vaccine combinations in the Danish population.  相似文献   

10.
Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome has undergone several mutations. The emergence of such variants has resulted in multiple pandemic waves, contributing to sustaining to date the number of infections, hospitalisations, and deaths despite the swift development of vaccines, since most of these mutations are concentrated on the Spike protein, a viral surface glycoprotein that is the main target for most vaccines. A milestone in the fight against the COVID-19 pandemic has been represented by the development of Paxlovid, the first orally available drug against COVID-19, which acts on the Main Protease (Mpro). In this article, we analyse the structural features of both the Spike protein and the Mpro of the recently reported SARS-CoV-2 variant XE, as well the closely related XD and XF ones, discussing their impact on the efficacy of existing treatments against COVID-19 and on the development of future ones.  相似文献   

11.
The development of efficient vaccines against COVID-19 is an emergent need for global public health. The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major target for the COVID-19 vaccine. To quickly respond to the outbreak of the SARS-CoV-2 pandemic, a nucleic acid-based vaccine is a novel option, beyond the traditional inactivated virus vaccine or recombinant protein vaccine. Here, we report a DNA vaccine containing the spike gene for delivery via electroporation. The spike genes of SARS-CoV and SARS-CoV-2 were codon optimized for mammalian cell expression and then cloned into mammalian cell expression vectors, called pSARS-S and pSARS2-S, respectively. Spike protein expression was confirmed by immunoblotting after transient expression in HEK293T cells. After immunization, sera were collected for antigen-specific antibody and neutralizing antibody titer analyses. We found that both pSARS-S and pSARS2-S immunization induced similar levels of antibodies against S2 of SARS-CoV-2. In contrast, only pSARS2-S immunization induced antibodies against the receptor-binding domain of SARS-CoV-2. We further found that pSARS2-S immunization, but not pSARS-S immunization, could induce very high titers of neutralizing antibodies against SARS-CoV-2. We further analyzed SARS-CoV-2 S protein-specific T cell responses and found that the immune responses were biased toward Th1. Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. These data suggest that DNA vaccination could be a promising approach for protecting against COVID-19.  相似文献   

12.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has undergone multiple mutations since its emergence, and its latest variant, Omicron (B.1.1.529), is the most contagious variant of concern (VOC) which poses a major and imminent threat to public health. Since firstly reported by World Health Organization (WHO) in November 2021, Omicron variant has been spreading rapidly and has become the dominant variant in many countries worldwide. Omicron is the most mutated variant so far, containing 60 mutations in its genome, including 37 mutations in the S-protein. Since all current COVID-19 vaccines in use were developed based on ancestral SARS-CoV-2 strains, whether they are protective against Omicron is a critical question which has been the center of study currently. In this article, we systemically reviewed the studies regarding the effectiveness of 2- or 3-dose vaccines delivered in either homologous or heterologous manner. The humoral and cellular immune responses elicited by various vaccine regimens to protect against Omicron variant are discussed. Current understanding of the molecular basis underlying immune escape of Omicron was also analyzed. These studies indicate that two doses of vaccination are insufficient to elicit neutralizing antibody responses against Omicron variant. Nevertheless, Omicron-specific humoral immune responses can be enhanced by booster dose of almost all type vaccines in certain degree, and heterologous vaccination strategy may represent a better choice than homogenous regimens. Intriguingly, results of studies indicate that all current vaccines are still able to elicit robust T cell response against Omicron. Future focus should be the development of Omicron variant vaccine, which may induce potent humoral as well as cellular immune responses simultaneously against all known variants of the SARS-CoV-2 virus.  相似文献   

13.
14.
The Omicron variant rapidly became the dominant SARS-CoV-2 strain in South Africa and elsewhere. This review explores whether this rise was due to an increased transmission of the variant or its escape from population immunity by an extensively mutated spike protein. The mutations affected the structure of the spike protein leading to the loss of neutralization by most, but not all, therapeutic monoclonal antibodies. Omicron also shows substantial immune escape from serum antibodies in convalescent patients and vaccinees. A booster immunization increased, however, the titre and breadth of antiviral antibody response. The cellular immune response against Omicron was largely preserved explaining a satisfying protection of boosted vaccinees against severe infections. Clinicians observed less severe infection with Omicron, but other scientists warned that this must not necessarily reflect less intrinsic virulence. However, in animal experiments with mice and hamsters, Omicron infections also displayed a lesser virulence than previous VOCs and lung functions were less compromised. Cell biologists demonstrated that Omicron differs from Delta by preferring the endocytic pathway for cell entry over fusion with the plasma membrane which might explain Omicron’s distinct replication along the respiratory tract compared with Delta. Omicron represents a distinct evolutionary lineage that deviated from the mainstream of evolving SARS-CoV-2 already in mid-2020 raising questions about where it circulated before getting widespread in December 2021. The role of Omicron for the future trajectory of the COVID-19 pandemic is discussed.  相似文献   

15.
Introduction: COVID-19, the infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), often presents with a spectrum of symptoms at varying levels of severity, ranging from asymptomatic patients to those with fatal complications, such as myocarditis. With increased availability of COVID-19 vaccines, the awareness of possible side effects has expanded as reports surface. This study reviewed cases of myocarditis following COVID-19 vaccination and with existing literature on COVID-19 infection-induced myocarditis to compare clinical courses and analyze possible mechanisms of action. Methods: A systematic review of literature was conducted to identify published case reports (as of February 3, 2022) pertaining to the development of myocarditis following COVID-19 vaccination with either Pfizer or Moderna for an in-depth analysis. Additional subgroup analyses were conducted based on age, past medical history, vaccine manufacturer, and dose number. Results: There were 53 eligible case reports that were included in this study. Patients were mostly male with a median age of 24 years, and the most reported symptom upon presentation was chest pain. Seventy percent of the cases involved the Pfizer vaccine with a majority of myocarditis developing subsequent to second dose. Resolution of symptoms was achieved in all but one patient. Clinical severity, as measured primarily by left ventricular ejection fraction, appeared to be worse among adult patients than pediatric, as well as for patients with comorbidities. Conclusion: This study revealed an observable association between COVID-19 vaccines and myocarditis. However, the clinical course and prognosis seem favorable and less prevalent than those conferred from natural infection.  相似文献   

16.
The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARS-CoV-2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the two-month study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2.  相似文献   

17.
IntroductionBNT162b2 (BioNTech and Pfizer) is a nucleoside-modified mRNA vaccine that provides protection against SARS-CoV-2 infection and is generally well tolerated. However, data about its efficacy, immunogenicity and safety in people of old age or with underlying chronic conditions are scarce.PurposeTo describe BNT162b2 (BioNTech and Pfizer) COVID-19 vaccine immunogenicity, effectiveness and reactogenicity after complete vaccination (two doses), and immunogenicity and reactogenicity after one booster, in elders residing in nursing homes (NH) and healthy NH workers in real-life conditions.MethodsObservational, ambispective, multicenter study. Older adults and health workers were recruited from three nursing homes of a private hospital corporation located in three Spanish cities. The primary vaccination was carried out between January and March 2021. The follow-up was 13 months. Humoral immunity, adverse events, SARS-CoV-2 infections, hospitalizations and deaths were evaluated. Cellular immunity was assessed in a participant subset.ResultsA total of 181 residents (mean age 84.1 years; 89.9% females, Charlson index ≥2: 45%) and 148 members of staff (mean age 45.2 years; 70.2% females) were surveyed (n:329). After primary vaccination of 327 participants, vaccine response in both groups was similar; ≈70% of participants, regardless of the group, had an antibody titer above the cut-off considered currently protective (260 BAU/ml). This proportion increased significantly to ≈ 98% after the booster (p < 0.0001 in both groups). Immunogenicity was largely determined by a prior history of COVID-19 infection. Twenty residents and 3 workers were tested for cellular immunity. There was evidence of cellular immunity after primary vaccination and after booster. During the study, one resident was hospitalized for SARS-CoV-2. No SARS-CoV-2-related deaths were reported and most adverse events were mild.ConclusionsOur results suggest that the BNT162b2 mRNA COVID-19 vaccine is immunogenic, effective and safe in elderly NH residents with underlying chronic conditions.  相似文献   

18.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19,简称新冠肺炎)的出现,对国际公众健康构成了严重威胁,伴随COVID-19大流行而来的是SARS-CoV-2基因组的不断突变,尤其是受关注的变异体(variants of concern,VOCs)给全球COVID-19疫情防控带来了挑战。本文综述了SARS-CoV-2的突变情况和现阶段主要流行的VOCs的特征,总结了现有及潜在的COVID-19预防、诊断和治疗手段,并通过分析SARS-CoV-2变异体对全球COVID-19疫情防控措施的影响,提出合理的建议,以期为今后可能爆发的大范围流行病的防控提供理论依据。  相似文献   

19.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   

20.
It has been more than a year since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged. Many studies have provided insights into the various aspects of the immune response in coronavirus disease 2019 (COVID-19). Especially for antibody treatment and vaccine development, humoral immunity to SARS-CoV-2 has been studied extensively, though there is still much that is unknown and controversial. Here, we introduce key discoveries on the humoral immune responses in COVID-19, including the immune dynamics of antibody responses and correlations with disease severity, neutralizing antibodies and their cross-reactivity, how long the antibody and memory B-cell responses last, aberrant autoreactive antibodies generated in COVID-19 patients, and the efficacy of currently available therapeutic antibodies and vaccines against circulating SARS-CoV-2 variants, and highlight gaps in the current knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号