首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy‐to‐use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market.  相似文献   

2.
Summary The growth rates of immobilized Penicillium chrysogenum strains are important in their application to semicontinuous penicillin production. Immobilized P. chrysogenum strains produced about 10–15% less biomass but about 1–2 times more penicillin than free suspended mycelia.In a chemically defined medium an industrial P. chrysogenum strain, S1, produced about 10–12 times more penicillin than strain ATCC 12690. In a complex medium the immobilized P. chrysogenum S1 produced about 12% penicillin more than in shaken cultures. In bubble column fermentations, penicillin production was 163% higher in the complex medium than in the chemically defined medium.  相似文献   

3.
Penicillium chrysogenum is not only an industrially important filamentous fungus for penicillin production, but it also represents as a promising cell factory for production of natural products. Development of efficient transformation systems with suitable selection markers is essential for genetic manipulations in P. chrysogenum. In this study, we have constructed a new and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system with two different selection markers conferring the resistance to nourseothricin and phleomycin for P. chrysogenum. Under the optimized conditions for co-cultivation at 22 °C for 60 h with acetosyringone concentration of 200 μM, the transformation efficiency of the ATMT system could reach 5009 ± 96 transformants per 106 spores. The obtained transformants could be exploited as the T-DNA insertion mutants for screening genes involved in morphogenesis and secondary metabolism. Especially, the constructed ATMT system was applied successfully to generate a knockout mutant of the laeA regulatory gene and relevant complementation strains in a wild strain of P. chrysogenum. Our results indicated that the LaeA regulator controls growth, sporulation, osmotic stress response and antibiotic production in P. chrysogenum, but its function is reliant on nitrogen sources. Furthermore, we showed that the laeA orthologous genes from the citrus postharvest pathogen P. digitatum and from the industrial fungus Aspergillus niger could recover the phenotypic defects in the P. chrysogenum laeA deletion mutant. Conclusively, this work provides a new ATMT system, which can be employed for T-DNA insertional mutagenesis, heterologous gene expression or for molecular inspections of potential genes related to secondary metabolism in P. chrysogenum.  相似文献   

4.
Aims: This study aimed at modelling the effect of ethanol vapours, in the range 0·7–7·5 kPa, on the inactivation of dry‐harvested conidia of Penicillium chrysogenum, Penicillium digitatum and Penicillium italicum. Methods and Results: Survival curves were modelled by a Weibull model: log (N/N0) = ?1/2·303 (t/α)β. The shape parameter β was different from one in all cases, indicating that the classical first‐order kinetics approach is the exception rather than the rule. Survival curves exhibited upward concavity (β < 1) with the notable exception of P. chrysogenum at ethanol vapour pressures 0·7 and 1·5 kPa. The scale parameter α (h) varied greatly depending on the ethanol vapour pressure and on the species. Conclusions: For safety reasons, it is recommended not to exceed an ethanol vapour pressure of 3·3 kPa. At 2·8 kPa, more than 4 log10 reductions in viable conidia were achieved for all the species after 24‐h exposure. Significance and Impact of the Study: Ethanol has GRAS status in the USA and represents an interesting alternative to fungicides. The effectiveness of ethanol vapours to inactivate dry‐harvested conidia of some Penicillium was demonstrated in this study.  相似文献   

5.
The protein PgChP is a new chitosanase produced by Penicillium chrysogenum AS51D that showed antifungal activity against toxigenic molds. Two isoforms were found by SDS-PAGE in the purified extract of PgChP. After enzymatic deglycosylation, only the smaller isoform was observed by SDS-PAGE. Identical amino acid sequences were obtained from the two isoforms. Analysis of the molecular mass by electrospray ionization-mass spectrometry revealed six major peaks from 30 to 31 kDa that are related to different levels of glycosylation. The pgchp gene has 1,146 bp including four introns and an open reading frame encoding a protein of 304 amino acids. The translated open reading frame has a predicted mass of 32 kDa, with the first 21 amino acids comprising a signal peptide. Two N glycosylation consensus sequences are present in the protein sequence. The deduced sequence showed high identity with fungal chitosanases. A high level of catalytic activity on chitosan was observed. PgChP is the first chitosanase described from P. chrysogenum. Given that enzymes produced by this mold species are granted generally recognized as safe status, PgChP could be used as a food preservative against toxigenic molds and to obtain chitosan oligomers for food additives and nutraceuticals.  相似文献   

6.
Panomycocin, a novel exo-beta 1,3 glucanase, was tested as an antifungal agent against green and blue mold diseases, the most important causes of post harvest decay in citrus fruits. All tested isolates of Penicillium digitatum and Penicillium italicum were susceptible to panomycocin in vitro. Effective panomycocin concentrations for 50% growth inhibition (MIC-2) for P. digitatum and P. italicum were 2 and 1 μg ml−1, respectively. Complete (MIC-0) growth inhibition of all isolates observed at a panomycocin concentration of 16 μg ml−1. Treatment of spores with panomycocin at values lower than the MIC-0 led to slower germ tube elongation and mycelium growth. In tests on fruit, panomycocin at concentrations equal to in vitro MIC-0 value protected lemon fruit from decay.  相似文献   

7.
The antifungal action of four essential oils of Foeniculum vulgare (fennel), Thymus vulgaris (thyme), Eugenia caryophyllata (Clove) and Salvia officinalis (sage) was tested in vitro against Penicillium digitatum Sacc. Direct contact and vapour phase were used to test the antifungal activity of these essential oils against P. digitatum that is responsible for green mould rot of citrus fruits. The vapour phase and direct contact of clove and thyme essential oils exhibited the strongest toxicity and totally inhibited the mycelial growth of the test fungus. Thyme and clove essential oils completely inhibited P. digitatum growth either when added into the medium 600 μl l−1 or by their volatiles with 24 μl per 8 cm diameter Petri dish. In in vitro mycelial growth assay showed fungistatic and fungicidal activity by clove and thyme essential oils. Sage and fennel oils did not show any inhibitory activity on this fungus. Scanning electron microscopy (SEM) was done to study the mode of action of clove oil in P. digitatum and it was observed that treatment with the oil leads to large alterations in hyphal morphology.  相似文献   

8.

Background  

Postharvest losses of citrus fruit due to green mold decay, caused by the fungus Penicillium digitaum, have a considerable economic impact. However, little is known about the molecular processes underlying the response of citrus fruit to P. digitatum.  相似文献   

9.
A phenol-degrading Penicillium chrysogenum strain previously isolated from a salt mine was able to grow at 1,000 mg l−1 of resorcinol on solid medium. The aerobic degradation of resorcinol by P. chrysogenum CLONA2 was studied in batch cultures in minimal mineral medium with 58.5 g l−1 of sodium chloride using resorcinol as the sole carbon source. The fungal strain showed the ability to degrade up to 250 mg l−1 of resorcinol. Resorcinol and phenol efficiency degradation by P. chrysogenum CLONA2 was compared. This strain removes phenol faster than resorcinol. When phenol and resorcinol were in binary substrate matrices, phenol enhanced resorcinol degradation, and organic load decreased with respect to the mono substrate matrices. The acute toxicity of phenol and resorcinol, individually and in combination, to Artemia franciscana larvae has been verified before and after the bioremediation process with P. chrysogenum CLONA2. The remediation process was effective in mono and binary substrate systems.  相似文献   

10.
We have cloned and analysed a laeA gene (Pci-laeA) that may control mevastatin biosynthesis in Penicillium citrinum. The full-length Pci-laeA sequence is 1,340 bp with an ORF of 1,284 bp encoding 427 amino acids. It shows 95% identity with LaeA from P. chrysogenum. The predicted molecular mass of Pci-LaeA is 48.72 kDa with an estimated theoretical isoelectric point of 6.96. Pci-LaeA has a conserved S-adenosylmethionine binding site and a potential MlcR (a pathway specific regulator in mevastatin biosynthesis) binding site.  相似文献   

11.
A closed gas loop bioprocess was developed to improve fungal biotransformation of monoterpenes. By circulating monoterpene-saturated process gas, the evaporative loss of the volatile precursor from the medium during the biotransformation was avoided. Penicillium solitum, isolated from kiwi, turned out to be highly tolerant towards monoterpenes and to convert α-pinene to a range of products including verbenone, a valuable aroma compound. The gas loop was mandatory to reproduce the production of 35 mg L−1 verbenone obtained in shake flasks and also in the bioreactor. Penicillium digitatum DSM 62840 regioselectively converted (+)-limonene to the aroma compound α-terpineol, but shake flask cultures revealed a pronounced growth inhibition when initial concentrations exceeded 1.9 mM. In the bioreactor, toxic effects on P. digitatum during biotransformation were alleviated by starting a sequential feeding of non-toxic limonene portions after a preceding growth phase. Closing the precursor-saturated gas loop during the biotransformation allowed for an additional replenishment of limonene via the gas phase. The gas loop system led to a maximum α-terpineol concentration of 1,009 mg L−1 and an average productivity of 8–9 mg L−1 h−1 which represents a doubling of the respective values previously reported. Furthermore, a molar conversion yield of up to 63% was achieved. M. Pescheck and M. A. Mirata have contributed equally to this work.  相似文献   

12.
Yu ZL  Liu J  Wang FQ  Dai M  Zhao BH  He JG  Zhang H 《Folia microbiologica》2011,56(3):246-252
A novel phenylacetic acid (PAA)-induced CoA-ligase-encoding gene, designated as phlC, has been cloned from penicillin-producing fungus Penicillium chrysogenum. The open reading frame of phlC cDNA was 1671 bp and encoded a 556 amino acid residues protein with the consensus AMP binding site and a peroxisomal targeting signal 1 on its C terminus. The deduced amino acid sequence showed 37% and 38% identity with characterized P. chrysogenum Phl and PhlB protein, respectively. Functional recombinant PhlC protein was overexpressed in Escherichia coli. The purified recombinant enzyme was capable to convert PAA into its corresponding CoA ester with a specific activity of 129.5 ± 3.026 pmol/min per mg protein. Similar to Phl and PhlB, PhlC displayed broad substrate spectrum and showed higher activities to medium- and long-chain fatty acids. The catalytic properties of PhlC have been determined and compared to those of Phl and PhlB.  相似文献   

13.
The gdhA gene encoding the NADP-dependent glutamate dehydrogenase activity from Penicillium chrysogenum has been isolated and characterized for its use in gene expression. The nucleotide sequence of a 2816-bp genomic fragment was determined, showing an open reading frame of 1600 bp interrupted by two introns, of 160 bp and 57 bp respectively, with fungal consensus splice-site junctions. The predicted amino acid sequence revealed a high degree of identity to glutamate dehydrogenase enzymes, especially to those from the fungi Aspergillus nidulans (82%) and Neurospora crassa (78%). The gdhA gene was found to be present in a single copy in the genome of several P. chrysogenum strains with different penicillin productivity. The use of the gdhA promoter for homologous and heterologous gene expression in fungi and Escherichia coli was analyzed. Heterologous gene expression was ascertained by the construction of gene fusions with the lacZ gene from E. coli and the bleomycin-resistance determinant (ble R) from Streptoalloteichus hindustanus. Homologous gene expression was shown through the use of the penicillin-biosynthetic genes pcbC and penDE from P. chrysogenum and the cephalosporin biosynthetic genes cefEF and cefG from Acremonium chrysogenum. Received: 2 November 1998 / Received revision: 15 January 1999 / Accepted: 5 March 1999  相似文献   

14.
The genome sequence of Penicillium chrysogenum has initiated a range of fundamental studies, deciphering the genetic secrets of the industrial penicillin producer. More than 60 years of classical strain improvement has resulted in major but delicate rebalancing of the intracellular metabolism leading to the impressive penicillin titres of the current production strains. Several leads for further improvement are being followed up, including the use of P. chrysogenum as a cell factory for other products than β-lactam antibiotics.  相似文献   

15.
In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53 °C ± 0.53 °C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34 °C ± 0.25 °C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.  相似文献   

18.
Antifreeze proteins (AFPs), characterized by their ability to separate the melting and growth temperatures of ice and to inhibit ice recrystallization, play an important role in cold adaptation of several polar and cold-tolerant organisms. Recently, a multigene family of AFP genes was found in the diatom Fragilariopsis cylindrus, a dominant species within polar sea ice assemblages. This study presents the AFP from F. cylindrus set in a molecular and crystallographic frame. Differential protein expression after exposure of the diatoms to environmentally relevant conditions underlined the importance of certain AFP isoforms in response to cold. Analyses of the recombinant AFP showed freezing point depression comparable to the activity of other moderate AFPs and further enhanced by salt (up to 0.9 °C in low salinity buffer, 2.5 °C at high salinity). However, unlike other moderate AFPs, its fastest growth direction is perpendicular to the c-axis. The protein also caused strong inhibition of recrystallization at concentrations of 1.2 and 0.12 μM at low and high salinity, respectively. Observations of crystal habit modifications and pitting activity suggested binding of AFPs to multiple faces of the ice crystals. Further analyses showed striations caused by AFPs, interpreted as inclusion in the ice. We suggest that the influence on ice microstructure is the main characteristic of these AFPs in sea ice.  相似文献   

19.
Industrial strains of Penicillium chrysogenum possess many genomic changes leading to higher levels of penicillin. In this work several production and wild-type strains of Penicillium chrysogenum were used in comparative nucleotide sequence analysis of the biosynthesis cluster. The alignments confirmed sequence conservation not only in promoter regions of the biosynthesis genes but also throughout the entire 44.7-kbp genomic fragment comprising the whole biosynthesis cluster with 15.5-kbp and 13.1-kbp flanking regions. As another titre-enhancing mechanism we subsequently examined gene dosage in two production strains introduced here, NMU2/40 and B14. Quantitative real-time PCR and Southern blot analysis showed the amplification of the biosynthesis genes in both these strains. Through the real-time PCR method the exact copy number was estimated for each of the pcbAB, pcbC and penDE genes. The equal pool of all three genes per genome was confirmed for the both production strains indicating that in these strains the entire penicillin cluster has been amplified as an intact element. Penicillium chrysogenum NMU2/40 was found to carry four copies of the cluster, while six copies were estimated for B14. This also proves the contribution of the additional titre-enhancing mechanisms in both strains, since the industrial data referred much higher production of these strains compared with the single copy reference strain NRRL 1951.  相似文献   

20.
The indoor clade of Penicillium chrysogenum, the so-called Fleming clade, is the most common species of Penicillium on moldy building materials. In a previous study, we identified a 52 kDa human antigen characteristic of the indoor clade of P. chrysogenum not present in a taxonomically diverse selection of fungi. Further investigations revealed that it is a modestly glycosylated mature protein with a pI 5.3. The protein is apparently identical to a glucoamylase previously reported from an aluminum-tolerant P. chrysogenum mutant. Based on sequence similarity, molecular weight, and pI, it is distinct from a number of other glucoamylases from domesticated strains of Aspergillus oryzae and A. niger used to produce industrial enzymes. Surprisingly, it had not been reported as an allergen. The monoclonal antibodies developed have the potential for use in assays of P. chrysogenum antigens in spores and spore/mycelial fragments in dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号