首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of linker-scanning and deletion mutations was generated in the transactivating domain of the larger, 289-amino-acid-residue E1a protein of adenovirus type 2. Mutant genes were recombined into virus to assay the ability of the variant E1a proteins to activate expression of an E1a-dependent viral gene during infection. Results of assays performed at 32, 37, and 40 degrees C indicated that at least 2 of the 10 mutants tested showed limited temperature sensitivity for transactivation.  相似文献   

2.
The properties of a naturally occurring temperature-sensitive (ts) mutant of human adenovirus type 7 (Ad7) were studied. Mutant Ad7 (19), or E46-, was the nonhybrid adenovirus component derived from the defective simian virus 40 (SV40)-Ad7 hybrid (PARA). Growth of the mutant was restricted at 40.5 degrees C, and the ratios of virus yields in KB cells at 40.5 and 33 degrees C were 10(-2) to 10(-3). Viral DNA synthesis and the synthesis of adenovirus-specific antigens (tumor, capsid, hexon, and penton antigens) appeared normal at the restrictive temperature. The assembly of virus particles was aberrant, as determined by thin-section of infected cells. The infectivity of mutant virions was heat labile at 50 degrees C, suggesting a ts defect in a structural component of the viron. Analysis by polyacrylamide gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in mutant-infected cells suggested that at least the major virion polypeptides were synthesized at the restrictive temperature. A lack of inhibition of host protein synthesis late in mutant infections, as compared with wild-type (WT) infections at both the permissive and nonpermissive temperatures, made quantitation of infected-cell polypeptides difficult. Analysis of the assembly of capsomeres from cytoplasmic extracts of infected cells on sucrose gradients and by non-dissociating polyacrylamide gel electrophoresis suggested that hexon capsomeres were made at 40.5 degrees C. The hexon capsomeres made by the mutant at either 33 or 40.5 degrees C displayed a decreased migration in the non-dissociating gels compared with the WT hexon capsomeres. The molecular weights of the mutant and WT hexon polypeptides were identical. These results suggest that the ts lesion of this group B human Ad7 mutant may be reflected in altered hexons. The mutant Ad7 interfered with the replication of adenovirus types 2 and 21 at the elevated temperature.  相似文献   

3.
The adenovirus type 2 fiber mutant H2 ts 125 synthesized an unstable, temperature-sensitive fiber polypeptide with an apparent mol. wt. smaller by 2500 than the wild-type (62 K). The polypeptide of 59.5 K was found to be stable at the permissive temperature (33 degrees C). H2 ts 125 fiber synthesized in reticulocyte lysates had the same apparent mol. wt. of 59.5 K as the mutant fiber produced in vivo. Neither structural nor functional differences between wild-type and mutant fibers were detected in the N-terminal and C-terminal sequences, excluding the occurrence of a new initiation or termination codon. Restriction analysis of H2 ts 125 DNA also ruled out the hypothesis of a deletion mutant. The 59.5 K mutant fiber unit was normally glycosyated, N-acetylated, assembled into 6S oligomeric fiber and incorporated into virions. DNA sequencing of the H2 ts 125 fiber gene revealed two point mutations at nucleotides 3970 (C*TT leads to T*TT) and 4958 (GC*T leads to GT*T), corresponding to two amino acid changes at positions 105 and 434, respectively. The 105 mutation consisted of a conservative change Leu leads to Phe; the 434 interchange was Ala leads to Val, usually considered as nonconservative. The possibility of a donor site for splicing created by the mutation at codon GTT was eliminated on the basis of S1 nuclease analysis data. All these results suggested that either one or both mutations concerned highly organized domain(s) of the fiber polypeptide chain, resulting in aberrant mobility in SDS-polyacrylamide gels and temperature-sensitivity.  相似文献   

4.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

5.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

6.
A temperature-sensitive mutant of human adenovirus type 2, ts112, was isolated and characterized, ts112 was blocked in a late function required for virus maturation. At restrictive temperature, it accumulated light precursor particles that were able to mature into infectious virions upon temperature shift-down. Use of a mild extraction procedure and a reversible fixation by a cleavable diimido ester permitted the isolation and analysis of these labile intermediates in the adenovirus assembly. These accumulated particles had a sedimentation coefficient of about 600S and a buoyant density of 1.315 g/cm3 in CsCl. They contained a DNA fragment of 7--11S and two nonvirion proteins having molecular weights of 50,000 (50K) and 39.000 (39K), respectively. They resembled in composition and morphology the light intermediate particles found in wild-type adenovirus 2, which were identified as precursors of heavy intermediates, preceding the young virions. The ts112 lesion was apparently located at the exit of either the 50K and/or 39K proteins and at the entry of viral DNA.  相似文献   

7.
Temperature-sensitive mutations of human adenoviruses can be physically located on the viral genome by determining the DNA structures of recombinants formed in genetic crosses between different members of the same subgroup. We have analyzed the DNA structures of many interserotypic recombinants formed in crosses between temperature-sensitive (ts) mutants of adenovirus type 2 and adenovirus type 5 with the restriction endonucleases BamHI, EcoRI, HindIII, and and Sma I. In this way, we have mapped the physical coordinates of adenovirus type 2 (Ad2) ts1, Ad2 ts3, Ad2 ts4, and Ad2 ts48, and refined the mapping of Ad5 ts1.  相似文献   

8.
Temperature-sensitive mutants from three different complementation groups, ts5, ts19, and 6s58, have been shown to accumulate assembly intermediates at the restrictive temperature. The polypeptide composition of these intermediates is similar to that of the wild type, including the precursor polypeptides pVI, pVII, and pVIII. ts5 and ts19 also contained cleaved precursors, indicating assembly into defective virions. The increase of infectious virus after temperature shift-down of ts19 and ts58 was rapid when compared with that of ts24, which does not accumulate intermediates, suggesting that intermediates formed at nonpermissive temperature may be processed to mature virus. However, shift-down experiments reveal that only a fraction of the intermediates are utilized for virus assembly and that degradation of intermediates occurs at the restrictive temperature.  相似文献   

9.
Domains required for assembly of adenovirus type 2 fiber trimers.   总被引:9,自引:6,他引:3       下载免费PDF全文
Entry of human adenovirus into cells is a two-step process, mediated in the first step by a specific interaction between the trimeric fiber protein and a specific receptor on the surface of susceptible cells. Because of the interest in human adenovirus as a vector for gene therapy, we have mapped domains in the fiber protein that are important for proper assembly of this trimeric structure and for proper addition of O-linked N-acetylglucosamine (0-GlcNAc). Mutants of adenovirus type 2 fiber in this study were expressed in human cells by use of a recombinant vaccinia virus expression system that yielded protein indistinguishable from the fiber produced during adenovirus infection. The N-terminal half of the protein did not appear to influence fiber trimer formation, since deletions up to 260 amino acids (aa) from the N-terminal end as well as in-frame deletions within the shaft of the molecule still allowed trimerization; internal deletions in the shaft between aa 61 and 260 appeared to alter addition of 0-GlcNAc, as judged by loss of reactivity to a monoclonal antibody specific for this carbohydrate addition. Deletions from the C terminus of the molecule (as small as 2 aa) appeared to prevent trimer formation. Additions of amino acids to the C-terminal end of the fiber showed variable results: a 6-aa addition allowed trimer formation, while a 27-aa addition did not. These trimer-defective mutants were also relatively less stable, as judged kV pulse-chase experiments. Taken together, our results indicate that trimerization of the fiber requires at least two domains, the entire head (aa 400 to 582), and at least the C-terminal-most 15 aa of the shaft.  相似文献   

10.
Fifty temperature-sensitive mutants, which replicate at 32 degrees C but not at 39.5 degrees C, were isolated after mutagenesis of the vaccine strain of adenovirus type 7 with hydroxylamine (mutation frequency of 9.0%) or nitrous acid (mutation frequency of 3.8%). Intratypic complementation analyses separated 46 of these mutants into seven groups. Intertypic complementation tests with temperature-sensitive mutants of adenovirus type 5 showed that the mutant in complementation group A failed to complement H5ts125 (a DNA-binding protein mutant), that mutants in group B and C did not complement adenovirus type 5 hexon mutants, and that none of the mutants was defective in fiber production. Further phenotypic characterization showed that at the nonpermissive temperature the mutant in group A failed to make immunologically reactive DNA-binding protein, mutants in groups B and C were defective in transport of trimeric hexons to the nucleus, mutants in groups D, E, and F assembled empty capsids, and mutants in group G assembled DNA-containing capsids as well as empty capsids. The mutants of the complementation groups were physically mapped by marker rescue, and the mutations were localized between the following map coordinates: groups B and C between 50.4 and 60.2 map units (m.u.), groups D and E between 29.6 and 36.7 m.u., and group G between 36.7 and 42.0 m.u. or 44.0 and 47.0 m.u. The mutant in group A proved to be a double mutant.  相似文献   

11.
Temperature-sensitive mutants which replicate normally at 33 C but poorly at 39 C were isolated from nitrosoguanidine- or nitrous acid-mutagenized adenovirus 2 by (i) testing the cytopathic effect or inclusion body-forming capacity of random plaque isolates, or (ii) reduced plaque enlargement upon shifting from 33 to 39 C. Thirty-six mutants were isolated with 33 C/39 C plaque ratios varying from 20 to 10-5. Some of these mutants could be arranged into 13 groups by the complementation test. By means of recombination analysis a provisional linear genetic map was constructed.  相似文献   

12.
J Chroboczek  F Viard  J C D'Halluin 《Gene》1986,49(1):157-160
The temperature-sensitive (ts) mutant 112 of human adenovirus 2 is defective in the late stage of virus maturation. The region of functional mutation has been localised by marker rescue. It was observed that the ts mutation can be rescued by the left-hand part of the wild-type gene (nucleotides 12,301-12,891). By nucleotide sequencing, two mutations, both C to T (at position 12,386 and 12,741), were found in this region. The first one, in the glycine 20 codon, is silent, whereas the second changes alanine 145 to valine. A third mutation, which changed C to A (nucleotide 13,613), was identified in the right-hand part of the gene, resulting in the replacement of alanine-436 by threonine.  相似文献   

13.
14.
A temperature-sensitive mutant of human p53.   总被引:11,自引:5,他引:11       下载免费PDF全文
W Zhang  X Y Guo  G Y Hu  W B Liu  J W Shay    A B Deisseroth 《The EMBO journal》1994,13(11):2535-2544
  相似文献   

15.
The nature, polypeptide composition, and antigenic composition of the particles formed by six human adenovirus type 2 temperature-sensitive (ts) mutants were studied. ts115, ts116, and ts125 were phenotypically fiber-defective mutants, and ts103, ts104, and ts136 failed to synthesize detectable amounts of fiber plus penton base at 39.5 degrees C. The mutants belonged to five complementation groups, one group including ts116 and ts125. Except for ts103 and ts136, the other mutants were capable of producing particles at 39.5 degrees C. ts116 and ts125 accumulated light assembly intermediate particles (or top components) at nonpermissive temperatures, with few virus particles. The sodium dodecyl sulfate polypeptide pattern of ts116- or ts125-infected cells, intermediate particles, and virus particles showed that polypeptide IV (fiber) was smaller by a molecular weight of 2,000 than that in the wild-type virion and was glycosylated. In fiber plus penton base-defective ts104-infected cells, equivalent quantities of top components and viruses with a buoyant density (rho) of 1.345 g/ml (rho = 1.345 particles) were produced at 39.5 degrees C. These rho = 1.345 particles corresponded to young virions, as evidenced by the presence of uncleaved precursors to proteins VI, VIII, and VII. These young virions matured upon a shift down. Virus capsid vertex antigenic components underwent a phase of eclipse during their incorporation into mature virus particles. No antigenic penton base or IIa was detected in intermediate particles of all the ts mutants tested. Only hexon and traces of fiber antigens were found in ts104 young virions. Penton base and IIIa appeared as fully antigenically expressed capsid subunits in mature wild-type virions or ts104 virions after a shift down. The ts104 lesion is postulated to affect a regulatory function related in some way to penton base and fiber overproduction and the maturation processing of precursors PVI, PVII, and PVII.  相似文献   

16.
17.
The uncoating of adenovirus type 2 and a temperature-sensitive mutant, tsl, was studied. HEp-2 cells were infected with 32P- OR 125I-labeled purified virions for various lengths of time, and the nuclear and cytoplasmic fractions were analyzed by sucrose gradient velocity sedimentation and sodium dodecyl sulfate-polyacryl-amide gel electrophoresis. Within 1 h of infection, virions were converted into three subviral structures: (1) subviral structures in the cytoplasm with a density greater than virions but which qualitatively still contained all virus polypeptides; (ii) corelike structures associated with both the nuclear and cytoplasmic fractions and composed of viral DNA and polypeptides VIa2, V and PVII; and (iii) putative DNA-terminal protein complexes in the nuclei. The kinetic and compartmentalization studies suggested that the DNA-terminal protein complex is the end product of uncoating. The virions which were synthesized by tsl at the nonpermissive temperature and contained the precursor polypeptides PVI and PVII were found to be blocked in uncoating at the corelike stage. This block in uncoating provides the explanation for the lack of infectivity of these virions. A model for the uncoating of adenovirus is proposed.  相似文献   

18.
We have isolated a mutant clone from mouse FM3A cells with temperature-sensitive defects both in cytokinesis and in thymidine kinase enzyme activity. The clone, designated tsCl.B59, was isolated after mutagenesis at 33 degrees C followed by exposure to cytosine arabinoside at 39 degrees C. It was derived from a thymidine kinase deficient, 5-bromodeoxyuridine-resistant clone (S-BUCl.42) which was originally derived from wild-type clone H-5 of FM3A cells. The temperature-sensitive mutant clone grows normally at 33 degrees C, but not at 39 degrees C, where it exhibits an increased frequency of multinucleate cells due to defective cytokinesis. Unlike the parental S-BUCl.42 cells, which have negligible thymidine kinase activity and are unable to incorporate 3H-thymidine, the mutant in corporates substantial amounts of 3H-thymidine at 33 degrees C, although its thymidine kinase activity remains lower than that of wild-type H-5 cells. When cultures of tsCl.B59 cells are transferred to 39 degrees C, incorporation of 3H-thymidine decreases markedly. The decrease has been shown to be due to thermolability of the thymidine kinase in tsCl.B59 cells.  相似文献   

19.
The genome structures of about 100 interserotypic ts recombinants produced in crosses between human adenovirus type 2 (H2) and 5 (H5) temperature-sensitive mutants were analyzed by cleavage with restriction endonucleases to determine the map coordinates of the following temperature-sensitive mutants: penton base plus fiber-defective H2 ts103, -104, and -136, assembly-defective H2 ts112, fiber-defective H2 ts125, hexon-defective H2 ts118 and -121, and DNA-negative H2 ts111. H5 ts1 (100 K defective), H5 ts36 (DNA negative), H5 ts125 (mutated in the early 72,000-dalton protein), H5 ts22 (fiber defective), H5 ts58 (IIIa defective), and H5 ts18 and -19 were used as one of the parents. The physical locations of the H2 temperature-sensitive mutations thus defined are discussed in relation to the genetic map, the biological function altered, and the positions of the structural genes on the genome.  相似文献   

20.
BHK cells infected with the temperature-sensitive mutant ts13 of herpes simplex virus type 2 at a nonpermissive temperature lack the alkaline nuclease activity, which is induced by the mutant at a permissive temperature and by wild-type virus at either temperature. For ts13, enzyme activity could be induced by a temperature shift to permissive conditions, but not in the presence of cycloheximide. After a shift from permissive to nonpermissive conditions in the presence of cycloheximide, the activity was stable in wild-type, but not in mutant-infected, cells. After extensive purification, the wild-type nuclease was fourfold more heat stable in the presence of substrate than was the mutant enzyme. Mixtures of both purified enzymes showed the predicted intermediate stabilities. The results strongly suggest that the enzyme is virus coded and that the mutant possesses a lesion in the structural gene of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号