首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
Glucose metabolism plays an essential role in the physiology and development of almost all living organisms. In the present study we investigated glucose metabolism during the embryogenesis of the hard tick Boophilus microplus. An increase in glucose and glycogen content during the embryonic development of B. microplus was detected and shown to be due to the high enzyme activity of both gluconeogenesis and glycolytic pathways. Glucose 6-phosphate (G-6P), formed by hexokinase, is driven mainly to pentose-phosphate pathway, producing fundamental substrates for cellular biosynthesis. We detected an increase in glucose 6-phosphate dehydrogenase and pyruvate kinase activities after embryo cellularization. Accumulation of key metabolites such as glycogen and glucose was monitored and revealed that glycogen content decreases from day 1 up to day 6, as the early events of embryogenesis take place, and increases after the formation of embryo cellular blastoderm on day 6. Glucose and guanine (a sub-product of amino acids degradation in arachnids) accumulate almost concomitantly. The activity of phosphoenolpyruvate carboxykinase was increased after embryo cellularization. Taken together these data indicate that glycogen and glucose, formed during B. microplus embryogenesis after blastoderm formation, are produced by intense gluconeogenesis.  相似文献   

2.
The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. The glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.  相似文献   

3.
Various physiological stimuli trigger the conversion of noninfective Leishmania donovani promastigotes to the infective form. Here, we present the first evidence of the effect of glucose starvation, on virulence and survival of these parasites. Glucose starvation resulted in a decrease in metabolically active parasites and their proliferation. However, this was reversed by supplementation of gluconeogenic amino acids. Glucose starvation induced metacyclogenesis and enhanced virulence through protein kinase A regulatory subunit (LdPKAR1) mediated autophagy. Glucose starvation driven oxidative stress upregulated the antioxidant machinery, culminating in increased infectivity and greater parasitic load in primary macrophages. Interestingly, phosphoenolpyruvate carboxykinase (LdPEPCK), a gluconeogenic enzyme, exhibited the highest activity under glucose starvation to regulate growth of L. donovani by alternatively utilising amino acids. Deletion of LdPEPCK (Δpepck) decreased virulent traits and parasitic load in primary macrophages but increased autophagosome formation in the mutant parasites. Furthermore, Δpepck parasites failed to activate the Pentose Phosphate Pathway shunt, abrogating NADPH/NADP+ homoeostasis, conferring increased susceptibility towards oxidants following glucose starvation. In conclusion, this study showed that L. donovani undertakes metabolic rearrangements via gluconeogenesis under glucose starvation for acquiring virulence and its survival in the hostile environment.  相似文献   

4.
Gluconeogenesis in developing rat kidney cortex   总被引:7,自引:4,他引:3       下载免费PDF全文
1. Gluconeogenesis in developing rat kidney cortex was studied by assaying the activities of two enzymes, glucose 6-phosphatase and phosphoenolpyruvate carboxykinase, and by measuring glucose formation in tissue slices. 2. Glucose 6-phosphatase and phosphoenolpyruvate carboxykinase are present in late foetal (21-22-day-old) tissue and increase rapidly postnatally. Maximum activity of phosphoenolpyruvate carboxykinase occurs at 7 days of age, followed by a decline to the adult level. Glucose 6-phosphatase activity rises during the first 2 postnatal weeks and then declines. 3. Late foetuses synthesize glucose from both pyruvate and l-glutamate. The rate increases during the first 2 weeks to above adult levels. Synthesis is always higher from pyruvate than from glutamate. 4. The effect of 24hr. starvation was studied in perinatal animals. The results indicate that the ability to increase the rate of glucose synthesis as a result of starvation is not present at birth, but develops some time after the second postnatal day.  相似文献   

5.
The effect of oleate, palmitate, and octanoate on glucose formation was studied with lactate or pyruvate as substrate. Octanoate was much more quickly oxidized and utilized for ketone body production than were oleate and palmitate. Among fatty acids studied, only octanoate resulted in a marked increase of the 3-hydroxybutyrate/acetoacetate (3-OHBAcAc) ratio. Each of the fatty acids studied stimulated glucose synthesis from pyruvate. The enhancement of gluconeogenesis by long-chain fatty acids was abolished after the addition of ammonia. As concluded from the “crossover” plot, the stimulatory effect of fatty acids was due to: (i) a stimulation of pyruvate carboxylation, (ii) a provision of reducing equivalents for glyceraldehyde phosphate dehydrogenase, and (iii) an acceleration of flux through hexose diphosphatase. Moreover, palmitate and oleate resulted in an increased generation of mitochondrial phosphpenolpyruvate, while in the presence of octanoate, the activity of mitochondrial phosphoenolpyruvate carboxykinase was diminished. When lactate was used as the glucose precursor, palmitate and oleate increased glucose production by about 50% but did not affect the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis. In contrast, in spite of the stimulation of both pyruvate carboxylase and hexose diphosphatase, as judged from the crossover plot, the addition of octanoate resulted in a marked inhibition of both glucose formation and mitochondrial generation of phosphoenolpyruvate. The inhibitory effect of octanoate was reversed by ammonia. Results indicate that fatty acids and ammonia are potent regulatory factors of both the rate of glucose formation and the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis in hepatocytes of the fasted rabbit.  相似文献   

6.
Mercaptopicolinic acid inhibited 14CO2 uptake and phosphoenolpyruvate carboxykinase activity in intact fluke. Studies with enzyme preparations showed that the inhibition was mixed-competitive with phosphoenolpyruvate and non-competitive with GTP. Inhibition was not reversed by Mn2+. Pyruvate kinase was not inhibited by mercaptopicolinic acid, although under certain circumstances, mercaptopicolinic acid interfered with the pyruvate kinase assay system. Intact flukes incubated with mercaptopicolinic acid showed depressed adenylate energy charge, increased lactic acid production and reduced flow of carbon from phosphoenolpyruvate to the mitochondrial substrate, malate. Additions of glutamate, alanine or aspartate did not reverse these effects even though, in each case, the amino acid was metabolised and considerably more acid end products were formed than in the absence of mercaptopicolinic acid. The changes in the concentrations of metabolites and end products are consistent with the view that, in flukes whose energy metabolism is impaired by mercaptopicolinic acid, pyruvate enters the mitochondrion and is converted to acetic and propionic acids.  相似文献   

7.
BACKGROUND AND AIMS: Recent evidence suggests that inflammatory cytokines may mediate reduced hepatic glucose production and reduced blood glucose concentrations in sepsis. Therefore the aim of this study is to provide direct evidence of a cytokine-mediated interaction between Kupffer cells and hepatocytes by characterising the effects of lipopolysaccharide-stimulated Kupffer cells on hepatocyte gluconeogenesis, and the activity of key regulatory enzymes of this pathway. METHODS AND RESULTS: Primary isolates of hepatocytes co-cultured with lipopolysaccharide-stimulated Kupffer cells in Transwell inserts showed a 48% inhibition of gluconeogenesis (P < 0.001). RNase protection assay and ELISA of Kupffer cells and the culture media following exposure to lipopolysaccharide showed increased levels of interleukin-1 alpha and beta, tumour necrosis factor alpha and IL-10. The addition of IL-1beta and IL-10 to hepatocyte cultures inhibited gluconeogenesis by 52% (P < 0.001), whereas each cytokine alone was ineffective. To determine whether altered production or activity of phosphoenolpyruvate carboxykinase or pyruvate kinase was responsible for the reduced glucose synthesis, their mRNA, protein levels and enzyme activities were measured. Primary hepatocytes co-cultured with lipopolysaccharide-stimulated Kupffer cells or cultured with a combination of IL-1beta and IL-10 displayed reduced levels of phosphoenolpyruvate carboxykinase mRNA, protein and enzyme activity. In contrast the mRNA, protein levels and enzyme activity of pyruvate kinase were not altered; suggesting that gluconeogenesis was suppressed by downregulation of phosphoenolpyruvate carboxykinase. CONCLUSIONS: Therefore, hypoglycaemia, which is often observed in sepsis, may be mediated by Kupffer cell-derived IL-1beta and IL-10. In addition this study suggests these cytokines inhibit phosphoenolpyruvate carboxykinase production and thereby hepatic gluconeogenesis.  相似文献   

8.
9.
1. The properties of pyruvate kinase and, if present, phosphoenolpyruvate carboxykinase from the muscles of the sea anemone, scallop, oyster, crab, lobster and frog were investigated. 2. In general, the properties of pyruvate kinase from all muscles were similar, except for those of the enzyme from the oyster (adductor muscle); the pH optima were between 7.1 and 7.4, whereas that for oyster was 8.2; fructose bisphosphate lowered the optimum pH of the oyster enzyme from 8.2 to 7.1, but it had no effect on the enzymes from other muscles. Hill coefficients for the effect of the concentration of phosphoenolpyruvate were close to unity in the absence of added alanine for the enzymes from all muscles except oyster adductor muscle; it was 1.5 for this enzyme. Alanine inhibited the enzyme from all muscles except the frog; this inhibition was relieved by fructose bisphosphate. Low concentrations of alanine were very effective with the enzyme from the oyster (50% inhibition was observed at 0.4mm). Fructose bisphosphate activated the enzyme from all muscles, but extremely low concentrations were effective with the oyster enzyme (0.13mum produced 50% activation). 3. In general, the properties of phosphoenolpyruvate carboxykinase from the sea anemone and oyster muscles are similar: the K(m) values for phosphoenolpyruvate are low (0.10 and 0.13mm); the enzymes require Mn(2+) in addition to Mg(2+) for activity; and ITP inhibits the enzymes and the inhibition is relieved by alanine. These latter compounds had no effect on enzymes from other muscles. 4. It is suggested that changes in concentrations of fructose bisphosphate, alanine and ITP produce a coordinated mechanism of control of the activities of pyruvate kinase and phosphoenolpyruvate carboxykinase in the sea anemone and oyster muscles, which ensures that phosphoenolpyruvate is converted into oxaloacetate and then into succinate in these muscles under anaerobic conditions. 5. It is suggested that in the muscles of the crab, lobster and frog, phosphoenolpyruvate carboxykinase catalyses the conversion of oxaloacetate into phosphoenolpyruvate. This may be part of a pathway for the oxidation of some amino acids in these muscles.  相似文献   

10.
Summary Anoxia tolerance, glycogen degradation, free amino acid pool, adenylate energy charge and the accumulation and excretion of end products were monitored inLumbriculus variegatus Müller throughout 48 h of anoxia. A transition period lasting about 4 h could be distinguished from subsequent events during which malate, present in high amounts in the resting animals, is utilized, probably by conversion to succinate. Up to the 12th hour of anoxia there is an increase in concentration of free amino acids, except aspartate. Glutamate increases rapidly during the first half hour but decreases thereafter. Beginning with the second hour of anoxia the alanine concentration increases at the same rate glutamate concentration decreases, but the source of nitrogen during the first hour is unknown. It is argued that the nitrogen required for the synthesis of some of the amino acids is ultimately derived from proteolysis. After about 3 h of anoxia propionate and acetate are synthesized. At first these acids accumulate in the tissues, but after 4–6 h they are excreted into the surrounding medium. Acetate is excreted over the whole experimental period at a constant rate, whereas the excretion rate of propionate decreases slowly with time. The propionate/acetate ratio is in excess of 2. Classic malate dismutation is by far the most important mechanism in the maintenance of redox balance. Depletion of glycogen stores appears to play an important role in determining anoxic survival time. Due to extremely low activity of PEPCK the ratio of the specific activities of PK and PEPCK is very high. Further, the kinetic properties of pyruvate kinase do not support the assumption of a shift of the glycolytic carbon flow at the PEP level.Abbreviations PK Pyruvate kinase - PEPCK phosphoenolpyruvate carboxykinase - PEP phospho(enol)pyruvate - FBP fructose-1,6-bisphosphate - AEC adenylate energy charge - EMP-scheme Embden-Meyerhof-Parnas scheme of glycolysis - f w fresh body weight - dw dry body weight  相似文献   

11.
Summary Hansenula anomala, a yeast lacking malate enzyme, was able to grow in media containing malate or aspartate as sole carbon and energy sources. Both aspartate--ketoglutarate transaminase and pyruvate kinase activities changed their levels when the yeast was grown on different carbon sources. Pyruvate kinase activity was increased by fructose 1,6-diphosphate.These results indicate that in this yeast malate enzyme is not indispensable for the formation of pyruvate from malate or aspartate and that C4 dicarboxylic acids may provide pyruvate through the combined action of phosphoenolpyruvate carboxykinase and pyruvate kinase. It is also concluded that aspartate--ketoglutarate transaminase and pyruvate kinase are under regulatory control in Hansenula anomala.  相似文献   

12.
Summary D-Glucose and D-xylose addition to not-growing Rhodotorula gracilis cells brings about alterations in pyruvate kinase and phosphoenolpyruvate carboxykinase activities characteristic for glycolysis and gluconeogenesis, respectively.Abbreviations used PK Pyruvate kinase (EC 2.7.1.40) - PEPCK Phosphoenolpyruvate carboxykinase (EC 4.1.1.32) - PFK Phosphofructokinase (EC 2.7.1.11)  相似文献   

13.
Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures. Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phosphoglycerate kinase, pyruvate kinase, and acetate kinase coupled GDP as well as ADP, but P(i) compounds were not their phosphoryl acceptor. Cell extracts showed GDP-dependent activity of phosphoenolpyruvate carboxykinase, which assimilates bicarbonate and phosphoenolpyruvate into oxaloacetate, a precursor of succinate. Considerable amounts of GTP, polyphosphate, and PPi were found in glucose-fermenting cells, indicating that these compounds may serve as phosphoryl donors or acceptors in Actinomyces cells. PPi could be generated from UTP and glucose 1-phosphate through catalysis of UDP-glucose synthase, which provides UDP-glucose, a precursor of glycogen.  相似文献   

14.
Glucose metabolism plays an essential role in the physiology and development of almost all living organisms. In the present study we investigated glucose metabolism during the embryogenesis of the hard tick Boophilus microplus. An increase in glucose and glycogen content during the embryonic development of B. microplus was detected and shown to be due to the high enzyme activity of both gluconeogenesis and glycolytic pathways. Glucose 6-phosphate (G-6P), formed by hexokinase, is driven mainly to pentose-phosphate pathway, producing fundamental substrates for cellular biosynthesis. We detected an increase in glucose 6-phosphate dehydrogenase and pyruvate kinase activities after embryo cellularization. Accumulation of key metabolites such as glycogen and glucose was monitored and revealed that glycogen content decreases from day 1 up to day 6, as the early events of embryogenesis take place, and increases after the formation of embryo cellular blastoderm on day 6. Glucose and guanine (a sub-product of amino acids degradation in arachnids) accumulate almost concomitantly. The activity of phosphoenolpyruvate carboxykinase was increased after embryo cellularization. Taken together these data indicate that glycogen and glucose, formed during B. microplus embryogenesis after blastoderm formation, are produced by intense gluconeogenesis.  相似文献   

15.
The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. Glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.  相似文献   

16.
Glucose and glutamine metabolism in several cultured mammalian cell lines (BHK, CHO, and hybridoma cell lines) were investigated by correlating specific utilization and formation rates with specific maximum activities of regulatory enzymes involved in glycolysis and glutaminolysis. Results were compared with data from two insect cell lines and primary liver cells. Flux distribution was measured in a representative mammalian (BHK) and an insect (Spodoptera frugiperda) cell line using radioactive substrates. A high degree of similarity in many aspects of glucose and glutamine metabolism was observed among the cultured mammalian cell lines examined. Specific glucose utilization rates were always close to specific hexokinase activities, indicating that formation of glucose-6-phosphate from glucose (catalyzed by hexokinase) is the rate limiting step of glycolysis. No activity of the key enzymes connecting glycolysis with the tricarboxylic acid cycle, such as pyruvate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase, could be detected. Flux distribution in BHK cells showed glycolytic rates very similar to lactate formation rates. No glucose- or pyruvate-derived carbon entered the tricarboxylic acid cycle, indicating that glucose is mainly metabolized via glycolysis and lactate formation. About 8% of utilized glucose was metabolized via the pentose phosphate shunt, while 20 to 30% of utilized glucose followed pathways other than glycolysis, the tricarboxylic acid cycle, or the pentose phosphate shunt. About 18% of utilized glutamine was oxidized, consistent with the notion that glutamine is the major energy source for mammalian cell lines. Mammalian cells cultured in serum-free low-protein medium showed higher utilization rates, flux rates, and enzyme activities than the same cells cultured in serum-supplemented medium. Insect cells oxidized glucose and pyruvate in addition to glutamine. Furthermore, insect cells produced little or no lactate and were able to channel glycolytic intermediates into the tricarboxylic acid cycle. Metabolic profiles of the type presented here for a variety of cell lines may eventually enable one to interfere with the metabolic patterns of cells relevant to biotechnology, with the hope of improving growth rate and/or productivity. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The conversion of variable sugar mixtures into biochemicals poses a challenge for a single microorganism. For example, succinate has not been effectively generated from mixtures of glucose and xylose. In this work, a consortium of two Escherichia coli strains converted xylose and glucose to succinate in a dual phase aerobic/anaerobic process. First, the optimal pathway from xylose or glucose to succinate was determined by expressing either heterologous pyruvate carboxylase or heterologous adenosine triphosphate‐forming phosphoenol pyruvate (PEP) carboxykinase. Expression of PEP carboxykinase (pck) resulted in higher yield (0.86 g/g) and specific productivity (155 mg/gh) for xylose conversion, while expression of pyruvate carboxylase (pyc) resulted in higher productivity (76 mg/gh) for glucose conversion. Then, processes using consortia of the two optimal xylose‐selective and glucose‐selective strains were designed for two different feed ratios of glucose/xylose. In each case the consortia generated over 40 g/L succinate efficiently with yields greater than 0.90 g succinate/g total sugar. This study demonstrates two advantages of microbial consortia for the conversion of sugar mixtures: each sugar‐to‐product pathway can be optimized independently, and the volumetric consumption rate for each sugar can be controlled independently, for example, by altering the biomass concentration of each consortium member strain.  相似文献   

18.
Glucose-induced inactivation of the gluconeogenetic enzymes fructose-1,6-biphosphatase, cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase was tested in yeast mutants defective in adenylate cyclase (cyr1 mutation) and in the cAMP-binding subunit of cAMP-dependent protein kinase (bcy 1 mutation). In the mutant AM7-11D (cyr1 mutation), glucose-induced cAMP overshoot was absent, and no significant inactivation of the gluconeogenetic enzymes was detected, thus supporting the role of cAMP in the process. Moreover, in the mutant AM9-8B (bcy1 mutation), no cAMP-dependent protein kinase activity was evidenced, and, in addition, a normal inactivation pattern was observed, thus indicating that other mechanisms evoked by glucose might be required in the process. In the double mutant AM7-11DR-4 (cyr1 bcy1 mutations), no inactivating effect was triggered by the sugar: this suggests that cAMP exerts some additional effect on the process, besides the activation of cAMP-dependent protein kinase. Furthermore, in AM7-11D, extracellular cAMP triggered about 50% of inactivation of fructose-1,6-bisphosphatase; this effect was largely reversed in acetate medium plus cycloheximide even after 150 min of incubation. However, an extensive and essentially irreversible inactivation was evidenced in the presence of glucose plus cAMP, whereas glucose alone was only slightly effective. Therefore, the reversible effect of cAMP, which probably corresponds to enzyme phosphorylation, seems to be required for the irreversible, probably proteolytic, glucose-stimulated inactivation of this enzyme. Cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase in AM7-11D were also inactivated by cAMP, and much more by glucose plus cAMP, whereas glucose was practically ineffective. However, reversibility of the effect was not detected, and, in addition, no phosphorylation of phosphoenolpyruvate carboxykinase could be evidenced. Therefore, the sugar quite probably stimulates proteolysis of these enzymes, but the mechanism of cAMP in their degradation has still to be defined.  相似文献   

19.
With high concentrations of pyruvate as substrate for hepatocytes from fasted rats, high rates of cycling between pyruvate and the dicarboxylic acids occur, as shown isotopically. This rate of cycling is adequate to account for the hydrogen translocation from the mitochondria to the cytosol to furnish NADH for lactate formation. Addition of sufficiently high concentrations of mercaptopicolinate to block almost completely glucose formation from pyruvate, depresses isotopic cycling and lactate formation by only about 50-75%. Under some conditions, when the normal phosphoenolpyruvate carboxykinase activity is inhibited, cytosolic oxaloacetate may be decarboxylated directly to pyruvate, possibly via the decarboxylase activity of phosphoenolpyruvate carboxykinase.  相似文献   

20.
The effect of protein feeding and the addition of amino acids on the activity of hepatic phosphoenolpyruvate carboxykinase (GTP: oxalacetate carboxylyase (transphosphorylating), EC 4.1.1.32) was investigated in vivo and in the isolated perfused rat liver. Protein feeding resulted in a considerable increase in phosphoenolpyruvate carboxykinase activity within 6 h. This rise was independent of the presence of glucocorticoids.In the isolated perfused liver system amino acids per se had a small effect on phosphoenolpyruvate carboxykinase activity and led to an increase by 20% when glucocorticoids were present, but resulted in a rise by 100% when glucocorticoids plus dibutyryl cyclic AMP were added to the perfusion medium. The effect of amino acids in the presence of dibutyryl cyclic AMP could also be observed in the liver of glucocorticoid-deprived rats.Cycloheximide, a translational inhibitor, totally blocked all effects of amino acids on enzyme activity.These results indicate that the concentration of amino acids in the portal vein modify the regulation of phosphoenolpyruvate carboxykinase by cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号