首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isolated chloroplasts from spinach leaf cells, chloroplast subfractions, and a cell-free system of the cyanobacterium Synechococcus CCAP 6312 incorporated [1-14C]isopentenyl pyrophosphate in high yields into prenyl lipids. Products were polyprenols (C20, C45) chlorophylls, quinoid compounds, and fatty acid prenyl esters; prenyl pyrophosphates occurred in trace amounts, and carotenes were only formed to a limited extent in the Synechococcus system. The formation of fatty acid prenyl esters, which is described here for the first time, was found to occur in two different ways in the chloroplast system; by an acyl-CoA: polyprenol acyltransferase reaction associated with the envelope membranes and by a transesterification reaction from chlorophyll associated with the thylakoids. Endogenous fatty acid prenyl esters made up about 3% by weight of total lipids in spinach chloroplasts and were also found to be natural constituents of the cyanobacterial cells.Abbreviations Chl chlorophyll - ChlGG chlorophyll a containing a geranylgeranyl side chain - IPP isopentenyl pyrophosphate  相似文献   

2.
The uptake of [1-14C]isopentenyl diphosphate by intact plastids purified from cell suspensions of Vitis vinifera L. cv. Muscat de Frontignan was investigated using vacuum-filtration and silicone-oil-filtering techniques. Transport across the plastid envelope which was stimulated by cations, such as Mg2+ and Mn2+, was characterized by a K m of approx. 0.5 mM and a V max of 25 nmol·(mg protein)-1·-h-1. The data showed that isopentenyl diphosphate apparently accumulated in the plastid against a concentration gradient. The involvement of a protein carrier was suggested by the strong inhibition of the uptake by compounds which are known to block SH groups. Thus, the saturation kinetics together with the pH optimum (7.5–8), the temperature dependence (maximum incorporation at 37 °C) and the competitive inhibition by a structural analogue of the substrate (aminophenylethyl diphosphate) provided evidence for a mechanism of uptake by facilitated diffusion. The carrier identified may thus play a major role in supplying the plastid compartment with isopentenyl diphosphate for isoprenoid biosynthesis.Abbreviations APP aminophenylethyl diphosphate - DMAPP dimethylallyl diphosphate - GPP geranyl diphosphate - IPP isopentenyl diphosphate - NEM N-ethylmaleïmide - PCMB p-chloromercuribenzoate  相似文献   

3.
In recent studies using intact chloroplasts of spinach (Spinacia oleracea L.) to investigate the accumulation of acetyl-CoA produced by the activity of either acetyl-CoA synthetase (EC 6.2.1.1) or the pyruvate-dehydrogenase complex, this product was not detectable. These results in combination with new information on the physiological levels of acetate and pyruvate in spinach chloroplasts (H.-J. Treede et al. 1986, Z. Naturforsch. 41 C, 733–740) prompted a reinvestigation of the incorporation of [1-14C] acetate and [2-14C] pyruvate into fatty acids at physiological concentrations.The K m for the incorporation into fatty acids was about 0.1 mM for both metabolites and thus agreed with the values obtained by H.-J. Treede et al. (1986) for acetyl-CoA synthetase and the pyruvate dehydrogenase complex. However, acetate was incorporated with a threefold higher V max. Saturation for pyruvate incorporation into the fattyacid fraction was achieved only at physiological pyruvate concentrations (<1.0 mM). The diffusion kinetics observed at higher concentrations may be the result of contamination with derivates of the labeled substrate. Competition as well as double-labeling experiments with [3H]acetate and [2-14C]pyruvate support the notion that, at least in spinach, chloroplastic acetate is the preferred substrate for fatty-acid synthesis when both substrates are supplied concurrently (P.G. Roughan et al., 1979 b, Biochem. J. 184, 565–569).Experiments with spinach leaf discs confirmed the predominance of fatty-acid incorporation from acetate. Radioactivity from [1-14C]acetate appeared to accumulate in glycerolipids while that from [2-14C]pyruvate was apparently shifted in favor of the products of prenyl metabolism.Abbreviations Chl chlorophyll - TLC thin-layer chromatography  相似文献   

4.
A protocol for the isolation of intact plastids from two marine centric diatoms, Odontella sinensis (Greville) Grunow and Coscinodiscus granii Gough, has been worked out. The cells were broken in a Yeda Press, and the intact plastids were purified by centrifugation in Percoll gradients. Electron microscopy indicates that at least one of the four envelope membranes is present in the isolated plastids. The plastids are photosynthetically active as proven by CO2 fixation which was measured by light-dependent oxygen evolution. Rates up to 50 μmol O2 · (mg Chl)−1 · h−1, i.e. about 40% of the in vivo rate of photosynthesis were obtained. The inhibition of CO2 fixation by external phosphate and the ability of the plastids to reduce added 3-phosphoglycerate photosynthetically indicate the presence of a phosphate translocator in the envelope of the diatom plastids. Light-dependent O2 evolution upon addition of nitrite indicates the presence of nitrite reductase in these plastids. Purified envelope membranes of Odontella plastids analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis contain polypeptides similar to those of the envelope of higher-plant chloroplasts. However, there are additional bands present, which in part may be constituents of the two additional envelope membranes (“chloroplast endoplasmic reticulum”) and in part may represent additional components of the inner membranes. Received: 1 August 1997 / Accepted: 2 February 1998  相似文献   

5.
Young expanding spinach leaves exposed to 14CO2 under physiological conditions for up to 20 minutes assimilated CO2 into lipids at a mean rate of 7.6 micromoles per milligram chlorophyll per hour following a lag period of 5 minutes. Label entered into all parts of the lipid molecule and only 28% of the 14C fixed into lipids was found in the fatty acid moieties, i.e. fatty acids were synthesized from CO2in vivo at a mean rate of 2.1 micromoles per milligram chlorophyll per hour. Intact spinach chloroplasts isolated from these leaves incorporated H14CO3 into fatty acids at a maximal rate of 0.6 micromole per milligram chlorophyll per hour, but were unable to synthesize either the polar moieties of their lipids or polyunsaturated fatty acids. Since isolated chloroplasts will only synthesize fatty acids at rates similar to the one obtained with intact leaves in vivo if acetate is used as a precursor, it is suggested that acetate derived from leaf mitochondria is the physiological fatty acid precursor.  相似文献   

6.
Etioplasts and etiochloroplasts, isolated from seedlings of white mustard (Sinapis alba L.) grown in continuous far-red light, and chloroplasts isolated from cotyledons and primary leaves of white-light-grown seedlings exhibit high prenyl-lipid-forming activities. Only the etioplasts and etiochloroplasts, and to a much lesser extent chloroplasts from cotyledons are capable of forming carotenes from isopentenyl diphosphate as substrate, whereas in chloroplasts from primary leaves no such activities could be detected. By subfractionation experiments, it could be demonstrated that the phytoene-synthase complex in etioplasts and etiochloroplasts is present in a soluble form in the stroma, whereas the subsequent enzymes, i.e. the dehydrogenase, cis-trans isomerase and cyclase are bound to both membrane fractions, the prolamellar bodies/prothylakoids and the envelopes. In good agreement with previous results using isolated chromoplasts and chloroplasts, it is concluded that the phytoene-synthase complex may change its topology from a peripheral membrane protein in non-green plastids to a tightly membrane-associated protein in chloroplasts. This change is apparently paralleled by altered functional properties which render the complex undetectable in isolated chloroplasts. Further experiments concerning the reduction of chlorophyll a containing a geranylgeranyl side chain to chlorophyll a indicate that the light-induced etioplast-chloroplast conversion is accompanied by a certain reorganization of the polyprenoid-forming enzymatic equipment.Abbreviations Chl a chlorophyll a - ChlGG chlorophyll a containing a geranylgeranyl side chain - HPLC high-performance liquid chromatography - Tris 2-ammo-2-(hydroxymethyl)-1,3-propanediol  相似文献   

7.
Hans Kleinig  Bodo Liedvogel 《Planta》1980,150(2):166-169
1. Fatty acid synthesis in isolated intact chromoplasts from [1-14C]acetate was made possible by using ATP, ADP (via adenylate kinase), and, with decreasing efficiency, UTP, CTP, and GTP as energy sources. 2. The glycolytic path from dihydroxyacetone phosphate to acetyl-CoA operates within the chromoplasts. The glycolytic intermediates, especially 2-phosphoglycerate and phosphoenolpyruvate, served as very effective energy donors for fatty acid synthesis by phosphorylating the endogenous adenine nucleotide pool. 3. In the presence of exogenous ATP or ADP, appreciable amounts of in vitro formed fatty acids were found as acyl-CoA and subsequent products, mainly phosphatidylcholine. When other energy sources were used most of the acids formed were in the free form, and to a minor extent, in the phosphatidic acid and diacylglycerol fractions. Similar results have recently been reported for spinach chloroplasts (Kleinig and Liedvogel 1979, FEBS Lett.101, 339–342).Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - UTP uridine triphosphate - CTP cytidine triphosphate - GTP gnanosine triphosphate  相似文献   

8.
A cell-free system capable of converting [14C]geranylgeranyl diphosphate to ent-[14C]kaurene and to an unidentified acid-hydrolysable compound was obtained from the basal portions of 5-d-old shoots of wheat seedlings (Triticum aestivum L.). By means of marker enzyme activities, the synthesis of ent-kaurene and the unknown compound could be quantitatively assigned to a plastid fraction obtained by Percoll-gradient centrifugation of the homogenate. The enzyme activities were located within the plastids, probably in the stroma, because they withstood trypsin treatment of the intact plastids, and the plastids had to be broken to release the activity, which was then obtained in soluble form. Plastid membranes had no activity. Plastid stroma preparations obtained from pea (Pisum sativum L.) shoot tips and pumpkin (Cucurbita maxima L.) endosperm also yielded ent-kaurene synthetase activity, but did not form the unknown compound. The exact nature of the active plastids was not ascertained, but the use of methods for proplastid isolation was essential for full activity, and the active tissues are all known to contain high proportions of proplastids, developing chloroplasts or leucoplasts. We therefore believe that ent-kaurene synthesis may be limited to these categories. Mature chloroplasts from the wheat leaves did not contain ent-kaurene synthetase activity and did not yield the unknown component. Incorporation of [14C]geranylgeranyl diphosphate into ent-[14C]kaurene and the unknown component was assayed by high-performance liquid chromatography with on-line radiocounting. ent-[14C]Kaurene was identified by Kovats retention index and full mass spectra obtained by combined gas chromatography-mass spectrometry. The unknown component was first believed to be copalyl diphosphate, because it yielded a compound on acid hydrolysis, which migrated like copalol on high-performance liquid chromatography and gave a mass spectrum very similar to that of authentic copalol. However, differences in the mass spectrum and in retention time on capillary gas chromatography excluded identity with copalol. Furthermore, the unhydrolysed compound was not converted to ent-kaurene by a cell-free system from C. maxima endosperm as copalyl diphosphate would have been.Abbreviations ADH alcohol dehydrogenase - AMO 1618 2isopropyl-4-(trimethylammoniumchloride)-5-methylphenyl piperi-dine-1-carboxylate - BSA bovine serum albumin - DTT dithioth-reitol - GAn gibberellin An - GAPDH NADP+-glyceraldehyde 3-phosphate dehydrogenase - GC-MS combined gas chromatography-mass spectrometry - GGPP all trans-isomer of geranyl-geranyl diphosphate - KS ent-kaurene synthetase - MDH malate dehydrogenase - MAA mevalonate activating activity - SOR shikimate oxidoreductase We thank Mrs. Gudrun Bodtke and Mrs. Dorothee Dasbach for able technical assistance, Prof. L.N. Mander (Australian National University, Canberra, Australia) for ent-[2H2]kaurene and Dr. Yuji Kamiya (RIKEN, Saitama, Japan) for geranylgeraniol and copalol. The work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

9.
InChlamydomonas eugametos gametes, phosphatidylinositol 4-phosphate (PtdInsP) and phosphatidylinositol 4,5-bisphosphate (PtdInsP2) comprised 0.4 and 0.3% of the whole-cell phospholipids. They were concentrated in the plasma membrane around the cell body and were present in low concentrations in the flagellar membrane. When gametes were fed32PO 4 - , the label was rapidly incorporated into PtdInsP and PtdInsP2 and only slowly incorporated into structural lipids such as phosphatidylethanolamine and phosphatidylglycerol. Similarly, when a pulse of32PO 4 - was chased with PO 4 - , the label was rapidly lost from the polyphosphoinositol lipids but not from the structural lipids. The major fatty acids in the polyphosphoinositides were C-22 carbon polyenoic acids (70%). The significance of these results in relationship to intracellular signalling via inositol phosphates and Ca2+ is discussed.Abbreviations InsP3 inositol 1,4,5-trisphosphate - mt/mt+ mating-type plus or minus - PtdA phosphatidic acid - PtdEtn phosphatidylethanolamine - PtdGro phosphatidylglycerol - PtdIns phosphatidylinositol - PtdInsP phosphatidylinositol 4-phosphate; - PtdInsP2 phosphatidylinositol 4,5-bisphosphate - TCA trichloroacetic acid We thank Frank Schuring for Fig. 5A and Susan Kenter, Hans Kruisselbrink, Saskia Bijvank and Nelleke Corbett for their enthousiastic assistance.  相似文献   

10.
The intracellular localization of prenyltransferases involved in the biosynthesis of the phytoalexins glyceollin in soybean (Glycine max L.) and phaseollin in French bean (Phaseolus vulgaris L.) has been investigated. By sucrose- and Percoll-gradient centrifugation of microsomes of an elicitor-challenged soybean cell culture, the membranes containing prenyltransferase were separated from the endoplasmic reticulum and shown to be lighter in density. In a continuous Percoll gradient the peak of prenyltransferase activity coincided with the peak of galactolipid synthesis, as determined by incorporation of uridine 5′-diphospho-[14C]galactose (UDP-[14C]galactose). Intact chloroplasts isolated from cupricchloride-treated bean leaves contained both prenyltransferase and UDP-galactose transferase activity. Both activities increased during chloroplast isolation. Fractionation of swollen chloroplasts on a discontinuous sucrose gradient showed prenyltransferase and UDP-galactose transferase activity in the envelope membrane subfraction. It is concluded that in both plants prenyltransferase is located in the envelope membrane of plastids. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

11.
Mechanisms restricting the accumulation of chloroplast glycolipids in achlorophyllous etiolated or heat-treated 70S ribosome-deficient rye leaves (Secale cereale L. cv “Halo”) and thereby coupling glycolipid formation to the availability of chlorophyll, were investigated by comparing [14C]acetate incorporation by leaf segments of different age and subsequent chase experiments. In green leaves [14C]acetate incorporation into all major glycerolipids increased with age. In etiolated leaves glycerolipid synthesis developed much more slowly. In light-grown, heat-bleached leaves [14C]acetate incorporation into glycolipids was high at the youngest stage but declined with age. In green leaves [14C]acetate incorporation into unesterified fatty acids and all major glycerolipids was immediately and strongly diminished after application of an inhibitor of chlorophyll synthesis, 4,6-dioxoheptanoic acid. The turnover of glyco- or phospholipids did not differ markedly in green, etiolated, or heat-bleached leaves. The total capacity of isolated ribosome-deficient plastids for fatty acid synthesis was not much lower than that of isolated chloroplasts. However, the main products synthesized from [14C]acetate by chloroplasts were unesterified fatty acids, phosphatidic acid, and diacylglycerol, while those produced by ribosome-deficient plastids were unesterified fatty acids, phosphatidic acid, and phosphatidylglycerol. Isolated heat-bleached plastids exhibited a strikingly lower galactosyltransferase activity than chloroplasts, suggesting that this reaction was rate-limiting, and lacked phosphatidate phosphatase activity.  相似文献   

12.
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40–50 mg·d–1·(g fresh weight)–1) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-14C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2–3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60–80% in this lipid fraction.Abbreviations ACP acyl carrier protein - FW fresh weight This work was supported by the Bundesminister für Forschung und Technologie. The authors thank S. Borchert for her suggestions for plastid preparation.  相似文献   

13.
R. Höinghaus  J. Feierabend 《Planta》1985,166(4):452-465
To determine the sites of synthesis of chloroplast-envelope proteins, we have analysed several enzyme and translocator functions ascribed to the envelope membranes, and investigated the envelope polypeptide composition of plastids isolated from 70S ribosome-deficient leaves of rye (Secale cereale L.) generated by growing the plants at a temperature of 32°C. Since the ribosomedeficient plastids are also achlorophyllous in light-grown leaves, not only were chloroplasts from mature, green leaves used for comparison, but also those from yellowing, aged leaves as well as etioplasts from dark-grown leaves raised at a temperature of 22° C. A majority of the plastidenvelope polypeptides appeared to be of cytoplasmic origin. The envelopes of ribosome-deficient plastids possessed ATPase (EC 3.6.1.3) activity; this was not, however, dependent on divalent cations, in contrast to the Mn2+- or Mg2+-dependent ATPase which is associated with chloroplast envelopes. Adenylate kinase (EC 2.7.4.3) was present in the stromal fraction of ribosome-deficient plastids and the stromal form of this enzyme is, therefore, of cytoplasmic origin. In contrast to previous findings, adenylate kinase was not, however, specifically associated with the chloroplast-envelope membranes, either in rye or in spinach. Measurements of the uptake of l-[14C]-malate into ribosome-deficient plastids indicated the presence and cytoplasmic origin of the dicarboxylate translocator. Malate uptake into rye etioplasts was, however, low. The phosphate translocator was assayed by the uptake of 3-phospho-[14C]glycerate. While rapid 3-phosphoglycerate uptake was observed for rye chloroplasts and etioplasts, it was hardly detectable for ribosome-deficient, plastids and rather low for chloroplasts from aged leaves. A polypeptide of M r approx. 30000 ascribed to the phosphate translocator was greatly reduced in the envelope patterns of ribosome-deficient plastids and of chloroplasts from aged leaves.  相似文献   

14.
Effect of low (5 mmol·dm−3) and high (10 or 20 mmol·dm−3) doses of 1.10-phenanthroline (Phe), a photodynamic herbicide, on the development of chloroplasts in etiolated and subsequently illuminated maize seedlings and on the structure of already developed chloroplasts of green maize seedlings was examined. Etiolated and then irradiated plants were resistant to 5 mmol·dm−3 of Phe with respect to morphology, however Phe caused inhibition of greening and of grana formation. Higher Phe concentrations followed by exposure to light caused not only total inhibition of greening but also dilation of thylakoids, swelling of chloroplasts, and finally total destruction of chloroplast structure. Application of Phe in the same concentrations to green plants revealed that they were resistant to low dose of Phe with respect to morphology and structure of chloroplasts, however 10 and 20 mmol·dm−3 Phe and illumination caused the loss of turgor of treated plants and other photooxidative damages seen at the ultrastructural level. We concluded that maize, as representant of monocotyledonous plants, is resistant to low (5 mmol·dm−3) Phe concentration. Higher (10 or 20 mmol·dm−3) concentrations, used to determine the site of damage and mode of action of Phe on the level of cell revealed that action of photodynamic herbicides is based on standard photoinhibition mechanism and also probably on their chelating properties.  相似文献   

15.
Intact plastids from cell suspensions of Vitis vinifera L. cv. Muscat de Frontignan, free of detectable contamination by other particles as judged by the distribution of organelle-specific marker enzymes and by electron microscopy, exhibit geranyl-diphosphate synthase activity (EC 2.5.1.1). This synthase activity remains stable after tryptic digestion of unlysed organelles and is enhanced by plastid disruption. We conclude that the enzyme is located within the organelle. The possibility of an isopentenyl diphosphate/dimethylallyl diphosphate translocating system which would play a major role in the regulation of monoterpene metabolism is discussed.  相似文献   

16.
J. Browse  C. R. Slack 《Planta》1985,166(1):74-80
Plastids isolated from maturing, nongreen safflower (Carthamus tinctorius L.) cotyledons yielded unesterified fatty acids as the predominant product of fatty-acid synthesis from [1-14C]acetate. Exogenous reduced pyridine nucleotides were not required for this synthesis, but [1-14C]acetate incorporation was absolutely dependent on addition of ATP. Linseed (Linum usitatissimum L.) cotyledons are green during development and plastids isolated from them resembled leaf chloroplasts with developed grana. In contrast to the safflower plastids, those from linseed were able to carry out fatty-acid synthesis at low irradiances without the addition of either pyridine nucleotides or ATP. Intact linseed cotyledons were capable of net photosynthesis at rates up to 95 mol·mg-1 chlorophyll·h-1. However, the low-light environment inside the linseed capsule (approx. 15% of external) means that photosynthesis will not contribute appreciably to the carbon economy of the developing seed and its main role may be to supply cofactors for fatty-acid synthesis.Abbreviations ACP acyl carrier protein - DHAP dihydroxyacetone phosphate - PC phosphatidylcholine - PEP phosphoenolpyruvate - UFA unesterified fatty acids  相似文献   

17.
Acyl lipids and their constituent fatty acids were studied in leaves, chloroplasts and bundle-sheath strands of the C4 plant Amaranthus paniculatus L. grown under normal and 4%-oxygen-containing atmospheres. In all fractions the major lipids were found to be monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulphoquinovo-syldiacylglycerol and phosphatidylglycerol. Significant quantities of phosphatidylcholine and phosphatidylethanolamine were restricted to leaves and bundle-sheath strands. All lipids, except phosphatidylglycerol where 3-trans-hexadecenoic acid was also present, contained palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. On a chlorophyll basis and compared with whole leaves, the amounts of phosphatidylcholine and phosphatidylethanolamine in bundle-sheath strands were considerably reduced. Three weeks after the change from a normal to a 4% atmospheric O2 level, the galactolipid content, particularly in the bundlesheath strands, was enhanced. There were no significant differences in the degrees of saturationunsaturation of total acyl lipid for the plants grown in the low oxygen and normal atmospheres, although under 4% O2 the phosphatidylglycerol contained an increased proportion of 3-trans-hexadecenoic acid at the expense of palmitic acid.Abbreviations DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - SQDG sulphquinovosyldiacylglycerol  相似文献   

18.
The effects of irradiance and photoperiod on growth rates, chlorophyll a, β-carotene, total protein, and fatty acid content of Chlorella vulgaris were determined. The maximum growth rate (1.13 day−1) was at 100 μmol photons m−2 s−1 and 16:8-h light/dark photoperiod. Chlorophyll a and β-carotene contents significantly differed under different light regimes with chlorophyll a content lower at high irradiance and longer light duration, while β-carotene showed the inverse trend. The total protein and fatty acid content also significantly differed in different light regimes; the maximum percentage of protein (46%) was at 100 μmol photons m−2 s−1 and 16:8 h photoperiod, and minimum (33%) was at 37.5 μmol photons m−2 s−1 and 8:16 h photoperiod; the total saturated fatty acids increased, while monounsaturated and polyunsaturated fatty acids decreased with increasing irradiance and light duration.  相似文献   

19.
The nature of the starch-synthesising plastids in developing pea (Pisum sativum L.) embryos has been investigated. Chlorophyll and starch were distributed throughout the cotyledon during development. Chlorophyll content increased initially, then showed little change up to the point of drying out of the embryo. Starch content per embryo increased dramatically throughout development. The chlorophyll content per unit volume was highest on the outer edge of the cotyledon, while the starch content was highest on inner face. Nycodenz gradients, which fractionated mechanically-prepared plastids according to their starch content, failed to achieve any significant separation of plastids rich in starch and ADP-glucose pyrophosphorylase from those rich in chlorophyll and a Calvin-cycle marker enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase. However, material that was not sufficiently dense to enter the gradients was enriched in activity of the Calvin-cycle marker enzyme relative to that of ADP-glucose pyrophosphorylase. Nomarski and epi-fluorescence microscopy showed that intact, isolated plastids, including those with very large starch grains, invariably contained chlorophyll in stromal structures peripheral to the starch grain. We suggest that the starch-storing plastids of developing pea embryos are derived directly from chloroplasts, and retain chloroplast-like characteristics throughout their development. Developing pea embryos also contain chloroplasts which store little or no starch. These are probably located primarily on the outer edge of the cotyledons where there is sufficient light for photosynthesis at some stages of development.  相似文献   

20.
J. Sanchez  M. Mancha 《Planta》1981,153(6):519-523
The kinetics of incorporation of [2-14C] acetate into lipids and acyl-CoAs in relation to added CoA and ATP by isolated spinach chloroplasts have been examined. The effect of the concentration of these cofactors on lipid and acyl-CoA synthesis was also studied. In the absence of cofactors, or when only one was present, the incorporation was very low and went mainly into lipids. When both cofactors were present a strong stimulation of both activities occurred. After 25 min, acyl-CoAs were more strongly labeled than lipids and both activities continued linearly for at least 60 min.Abbreviations ACP acyl carrier protein - FFA free fatty acids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号