首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:观察比较BAY41-2272和己酮可可碱(PTX)这两种增强环磷酸鸟苷(cGMP)活性的物质对大鼠Thy-1诱导的进展性肾病模型的疗效,探讨肾纤维化治疗的新途径。方法:成功诱导Thy-1肾炎后,将大鼠分为四组:即肾纤维化组(RF组)、BAY 41-2272治疗组、PTX治疗组和对照组。治疗15周后,分别检测各组大鼠血清肌酐和尿蛋白排泄量,肾组织病理和免疫组化方法检测肾小球/小管间质基质堆积程度和ED1/PCNA阳性细胞数,检测肾小球和皮质转化生长因子TGF-β1、纤粘蛋白(fi- bronectin)、基质金属蛋白酶抑制物(TIMP-1)等蛋白能表达水平,ELISA方法检测肾小球/小管间质细胞的基础、刺激后cGMP水平。RT-PCR方法检测内皮细胞一氧化氮合成酶、α1/β1可溶性鸟苷酸环化酶mRNA水平。结果:观察结束时,BAY41-2272显著降低大鼠尿蛋白排泄和血肌酐水平,显著减轻肾小球/小管间质基质堆积程度,降低巨噬细胞浸润数目和TGF-β1、fibronectin表达水平,而PTX治疗仅产生轻微的变化。肾纤维化组大鼠的小管间质sGC mRNA、NO刺激的cGMP水平显著高于对照组,而肾小球的则较对照组降低;BAY41-2272治疗后肾小球/小管间质sGC mRNA、刺激后cGMP水平可显著提高,而PTX治疗的只有轻度提高而无统计学意义。结论:BAY41-2272治疗可显著改善肾组织NO-cGMP信号通路转导和cGMP的活性,可有效的延缓肾纤维化的进展,而PTX疗效则相对很弱。采用BAY41-2272提高cGMP活性的方案可能为肾纤维化提供新颖、极具前景的治疗策略。  相似文献   

2.
血红蛋白与一氧化氮的生物化学反应   总被引:1,自引:0,他引:1  
血红蛋白(Hb)的血红素或HbβCys^98分别与一氧化氮(NO)形成铁亚硝酰血红蛋白[Hb(Fe^Ⅱ)NO]或S-亚硝基血红蛋白(SNO-Hb)。两种存在状态与Hb铁的氧化还原化学以及Hb构象有关。Hb分子内NO能从血红素转移至βCys^93巯基,调节NO的贮存与释放。  相似文献   

3.
肌质网(sarcoplasmic reticulum,SR)中的钙释放通道利阿诺定受体(ryanodine receptor,RyR)是调控胞浆钙离子浓度的重要蛋白,其活性受多种调控剂影响.调控剂的不同电子传递性质可能作用于RyR的功能性巯基,进而影响其门控状态.了解具有不同电子传递性质的调控剂影响钙通道的作用机制具有重要意义.本研究采用光子相关光谱法(PCS)、CPM(7-二乙 基-3-(4′-马来酰亚胺苯基)4-甲基香豆素)荧光标记法及[3H]-ryanodine结合等实验,分别检测多种调控剂对RyR1的蛋白及复合体粒度分布、自由巯基量及对通道状态的影响,利用光漂白法检测各调控剂的电子传递性质.结果显示,激活剂和巯基氧化剂具有类似电子受体的性质并产生相似作用,即自由蛋白粒度增加,自由巯基量减少,具有激活通道作用;抑制剂和巯基还原剂则具有类似电子供体的性质,作用效果相反.  相似文献   

4.
李一凡  张勇 《生命的化学》2006,26(6):543-546
巯基亚硝基化(S-nitrosylation,SNO),即蛋白质中半胱氨酸的巯基与亚硝基基团(NO基团)形成共价键,是一氧化氮(NO)在体内发挥细胞信号转导作用的机制之一。NO通过使某些蛋白质发生SNO,进而可能参与神经退行性疾病如帕金森病(PD)发生的病理机制。深入认识帕金森病发病机制,对人们探索此类神经退行性疾病的新疗法具有重要意义。  相似文献   

5.
巯基亚硝基化(S-nitrosylation)修饰是一种一氧化氮(nitric oxide, NO)介导的氧化还原依赖的、可逆性蛋白质翻译后修饰。生理条件下,S-nitrosylation通过调控蛋白质的稳定性、蛋白质活性、亚细胞定位及蛋白质-蛋白质相互作用,在维持细胞稳态中发挥重要作用。而在多种病理条件下,蛋白质S-nitrosylation及其产物表现出异常的升高或降低。转录因子又称反式作用因子,通过识别并结合调控元件而影响基因转录。本文简要综述转录因子的S-nitrosylation修饰的研究进展及其生理学意义。  相似文献   

6.
一氧化氮参与炎症及自身免疫反应   总被引:1,自引:0,他引:1  
一氧化氮(nitric oxide,NO)是一种无机气体。在生物体内有多种生理和毒性作用。哺乳动物体内多种细胞可产生NO,如内皮细胞、神经细胞、巨噬细胞、血小板等,其靶细胞也多种多样。NO在体内是通过一氧化氮合成酶(NOS)由L-精氨酸合成。NOS有原生酶和诱生酶两种。原生酶为钙依赖  相似文献   

7.
缺氧诱导因子(HIF)是参与缺氧转录反应调控的转录调控因子,HIF的活化在缺氧时细胞中保护起重要作用,HIF及HIF依赖的基因如诱导型一氧化氮合酶(iNOS)、血红素氧合酶(HO-1)的激活可减轻心脏的缺血-再灌注损伤,HIF调节的基因表达可能介导了缺血预处理和缺血后处理的保护作用。本文对HIF在心肌缺血再灌注损伤中的保护作用予以综述。  相似文献   

8.
纤溶酶原在金黄色葡萄球菌感染中的作用   总被引:1,自引:0,他引:1  
金黄色葡萄球菌菌体表面有多种纤溶酶原受体,包括次黄嘌呤单核苷酸脱氢酶、核糖核苷酸还原酶、α-烯醇化酶和3-磷酸甘油醛脱氢酶等,它们均可以与纤溶酶原结合。与细菌结合的纤溶酶原可被宿主的纤溶酶原激活剂(组织型纤溶酶原激活剂和尿激酶型纤溶酶原激活剂)或葡萄菌属的纤溶酶原激活剂(葡激酶)激活为纤溶酶。细菌表面的纤溶酶有利于其降解宿主胞外基质,穿越组织屏障,因此哺乳动物的纤溶酶原可能在金黄色葡萄球菌感染宿主过程中起重要作用。  相似文献   

9.
囊性纤维化跨膜电导调节因子(CFTR)是一种c AMP依赖的Cl-通道蛋白,其在上皮液体分泌过程中具有重要作用。本研究组在前期工作中观察到两种甲氧基黄酮类化合物3’,4’,5,5’,6,7-六甲氧基黄酮(HMF)和5-羟基-6,7,3’,4’-四甲氧基黄酮(HTF)能够有效地激活CFTR Cl-通道,但是作用机制尚不清楚。本研究旨在利用细胞荧光淬灭模型和短路电流技术系统研究HMF和HTF对CFTR Cl-通道的激活作用。荧光淬灭实验结果显示两种化合物均能以剂量依赖的方式激活CFTR Cl-通道,该激活作用具有快速、可逆的特点,可被CFTR特异性抑制剂CFTRinh-172完全抑制;引人注目的是,HMF(EC50=2μmol/L)是迄今发现的亲和力最高的黄酮类CFTR Cl-通道激活剂。HMF和HTF对CFTR Cl-通道的激活作用具毛喉素(forskolin,FSK)依赖特性,与FSK和3-异丁基-1-甲基黄嘌呤(3-Isobutyl-1-methylx,IBMX)的作用存在相加效应,但是与三羟基异黄酮(genistein,GEN)的作用之间不存在协同效应。离体组织研究结果显示,HMF和HTF能够显著促进大鼠结肠粘膜Cl-电流及小鼠气管粘膜下腺液体分泌。以上结果提示,HMF和HTF能够通过提高c AMP水平和直接与CFTR蛋白作用两条途径发挥CFTR Cl-通道激活作用。本研究为深入揭示黄酮类CFTR Cl-通道激活剂结构与功能之间的关系奠定了基础。  相似文献   

10.
11.
谢宇潇  高士争  赵素梅 《遗传》2013,35(5):595-598
细胞中脂滴(Lipid droplets, LDs)表面存在多个调控脂肪储存和分解的蛋白, 这些蛋白对机体的脂肪代谢起着很重要的调控作用。CGI-58(Comparative gene identification-58)分布在LDs表面, 属于α/β水解酶折叠家族, 是脂肪甘油三酯脂肪酶(Adipose triglyceride lipase, ATGL)和依赖酰基辅酶A溶血磷脂酸酰基转移酶(Lysophosphatidic acid acyltransferase, LPAAT)的激活剂。在脂肪分解过程中, CGI-58结合PAT蛋白家族成员之一的脂滴包被蛋白(Perlipin)和ATGL, 促进脂肪分解, 同时CGI-58对ATGL的激活功能受脂滴包被蛋白家族成员间蛋白质与蛋白质相互作用的影响。文章结合国内外研究热点, 针对CGI-58在动物脂类代谢中的作用进行了综述。  相似文献   

12.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

13.
一氧化氮(nitric oxide,NO)作为重要的血管舒张活性因子已成共识。近年来,NO的非c GMP依赖调控机制——巯基亚硝基化修饰受到广泛关注。巯基亚硝基化属于蛋白质翻译后修饰,广泛参与调控生物体内各种生理病理过程。本综述将从NO相关的蛋白质巯基亚硝基化的发生和调控等方面简要介绍近年来相关工作的研究进展,并着重阐述巯基亚硝基化修饰在血管生理及相关疾病中发挥的调节作用。  相似文献   

14.
猪红细胞膜Ca~(2+)-ATP酶是一种钙调蛋白(CaM)依赖酶,其活力又依赖巯基的完整性。实验应用Ca~(2+)-ATP酶这一模型体系观察到重金属离子,Pb~(2+)、Cd~(2+)和Hg~(2+)都能替代Ca~(2+),激活CaM,从而激活Ca~(2+)-ATP酶;其最大刺激活力分别为85%、80%和30%,半刺激浓度分别为32、27和0.7μmol/L。当三种重金属离子的浓度增加时,则与Ca~(2+)-ATP酶的巯基结合,抑制酶的活力,Pb2~(2+)、Cd~(2+)和Hg~(2+)的半抑制浓度分别为370、440和2μmol/L。抑制作用为渐进性过程,而刺激作用为即时效应。抑制作用可为巯基化物,特别是二巯基化物所逆转。研究结果提示,CaM可能是重金属中毒最初作用的靶分子,而重金属中毒不仅使CaM“开关”失灵,还可能导致细胞内Ca~(2+)的调节全面失控。  相似文献   

15.
谷氧还蛋白的生物学活性及其与人类疾病的关系   总被引:5,自引:0,他引:5  
谷氧还蛋白(glutaredoxin,Grx),又称巯基转移酶(thioltransferase,TTase),是巯基-二硫键氧化还原酶家族的重要组分。Grx最早由Holmgren发现,在生物界普遍存在,是一种依赖谷胱甘肽(GSH)催化氧化状态的蛋白质二硫键还原为巯基,修复蛋白质活性的小分子酶蛋白。它具有多种生物学活性,在调节机体的氧化还原反应和细胞生长、抑制凋亡方面起重要作用,与人类某些疾病,如心脑血管疾病、白内障、糖尿病、AIDS、自身免疫性疾病、肿瘤和感染等的发生、发展,以及干预治疗有关。  相似文献   

16.
近年研究表明,一氧化氮(nitric oxide,NO)是一种新型细胞信使分子,它通过激活靶细胞中可溶性鸟苷酸环化酶,使细胞内cGMP含量增多,引起一系列生物学效应,从而完成其在细胞间传递信息的功能。然而,十分矛盾的是在脑神经细胞中,NOS合成酶(nitric oxide synthase,NOS)却与鸟苷酸环化酶的分布不一致。最近,Snyder等应用原位杂交技术发现,一氧化碳合成酶(carbon monoxide synthase,COS)即血红素氧  相似文献   

17.
综述了蛋白质巯基亚硝基化修饰的特点、检测方法、功能研究、相关疾病和发展态势.蛋白质巯基亚硝基化(S-nitrosation)是指一氧化氮(nitricoxide,NO)及其衍生物修饰蛋白质半胱氨酸(cysteine,Cys)巯基—SH生成—SNO,其是一种典型的氧化还原依赖的蛋白质翻译后修饰,也是一氧化氮发挥其广泛信号转导作用的新的重要途径.  相似文献   

18.
植物细胞一氧化氮信号转导研究进展   总被引:5,自引:0,他引:5  
一氧化氮(nitric oxide, NO)作为重要的信号分子, 调控植物的种子萌发、根形态建成和花器官发生等许多生长发育过程, 并参与气孔运动的调节以及植物对多种非生物胁迫和病原体侵染的应答过程。已经知道, 精氨酸依赖的NOS途径和亚硝酸盐依赖的NR途径是植物细胞NO产生的主要酶促合成途径。NO及其衍生物能够直接修饰底物蛋白的金属基团、半胱氨酸和酪氨酸残基, 通过金属亚硝基化、巯基亚硝基化和Tyr-硝基化等化学修饰方式, 调节靶蛋白的活性, 并影响cGMP和Ca2+信使系统等下游信号途径, 调控相应的生理过程。最新的一些研究结果也显示, MAPK级联系统与NO信号转导途径之间存在复杂的交叉调控。此外, 作为活跃的小分子信号, NO和活性氧相互依赖并相互影响, 共同介导了植物的胁迫应答和激素响应过程。文章综述了植物NO信号转导研究领域中一些新的研究进展, 对NO与活性氧信号途径间的交叉作用等也作了简要介绍。  相似文献   

19.
能量敏感的AMPK-SIRT1通路与炎症调控   总被引:1,自引:0,他引:1  
  相似文献   

20.
葡萄球菌激酶作为新型溶栓剂的研究进展   总被引:2,自引:0,他引:2  
近年来对溶栓剂的研究取得了很好的成果,主要集中在单链尿激酶型纤溶酶原激活剂(scuPA),组织型纤溶酶原激活剂(tPA),葡萄球菌激酶(SaK)等。葡萄球菌激酶(SaK)是一种激活溶纤维蛋白的制剂,它与纤溶酶原(Plg)形成1∶1的复合体,使后者转变为纤溶酶(Pli)后激活其他分子变为Pli。从葡激酶的溶栓作用机制,包括与纤溶酶(原)等因子的结合作用,葡激酶的高级结构,抗原性等问题以及近年来有关葡激酶作为新一代溶栓的研究进展进行了综述,并指出进一步利用蛋白质工程,对葡激酶进行分子改造的设想。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号