首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.  相似文献   

2.
The Rad53 kinase plays a central role in yeast DNA damage checkpoints. Rad53 contains two FHA phosphothreonine-binding domains that are required for Rad53 activation and possibly downstream signaling. Here we show that the N-terminal Rad53 FHA1 domain interacts with the RNA recognition motif, coiled-coil, and SQ/TQ cluster domain-containing protein Mdt1 (YBl051C). The interaction of Rad53 and Mdt1 depends on the structural integrity of the FHA1 phosphothreonine-binding site as well as threonine-305 of Mdt1. Mdt1 is constitutively threonine phosphorylated and hyperphosphorylated in response to DNA damage in vivo. DNA damage-dependent Mdt1 hyperphosphorylation depends on the Mec1 and Tel1 checkpoint kinases, and Mec1 can directly phosphorylate a recombinant Mdt1 SQ/TQ domain fragment. MDT1 overexpression is synthetically lethal with a rad53 deletion, whereas mdt1 deletion partially suppresses the DNA damage hypersensitivity of checkpoint-compromised strains and generally improves DNA damage tolerance. In the absence of DNA damage, mdt1 deletion leads to delayed anaphase completion, with an elongated cell morphology reminiscent of that of G(2)/M cell cycle mutants. mdt1-dependent and DNA damage-dependent cell cycle delays are not additive, suggesting that they act in the same pathway. The data indicate that Mdt1 is involved in normal G(2)/M cell cycle progression and is a novel target of checkpoint-dependent cell cycle arrest pathways.  相似文献   

3.
Telomeres play the key protective role at chromosomes. Many studies indicate that loss of telomere function causes activation of DNA damage response. Here, we review evidence supporting interdependence between telomere maintenance and DNA damage response and present a model in which these two pathways are combined into a single mechanism for protecting chromosomal integrity. Proteins directly involved in telomere maintenance and DNA damage response include Ku, DNA-PKcs, RAD51D, PARP-2, WRN and RAD50/MRE11/NBS1 complex. Since most of these proteins participate in the repair of DNA double-strand breaks (DSBs), this was perceived by many authors as a paradox, given that telomeres function to conceal natural DNA ends from mechanisms that detect and repair DSBs. However, we argue here that the key function of one particular DSB protein, Ku, is to prevent or control access of telomerase, the enzyme that synthesises telomeric sequences, to both internal DSBs and natural chromosomal ends. This view is supported by observations that Ku has a high affinity for DNA ends; it acts as a negative regulator of telomerase and that telomerase itself can target internal DSBs. Ku then directs other DSB repair/telomere maintenance proteins to either repair DSBs at internal chromosomal sites or prevent uncontrolled elongation of telomeres by telomerase. This model eliminates the above paradox and provides a testable scenario in which the role of DSB repair proteins is to protect chromosomal integrity by balancing repair activities and telomere maintenance. In our model, a close association between telomeres and different DNA damage response factors is not an unexpected event, but rather a logical result of chromosomal integrity maintenance activities. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   

4.
5.
DNA double strand breaks (DSBs) are highly toxic to the cells and accumulation of DSBs results in several detrimental effects in various cellular processes which can lead to neurological, immunological and developmental disorders. Failure of the repair of DSBs spurs mutagenesis and is a driver of tumorigenesis, thus underscoring the importance of the accurate repair of DSBs. Two major canonical DSB repair pathways are the non-homologous end joining (NHEJ) and homologous recombination (HR) pathways. 53BP1 and BRCA1 are the key mediator proteins which coordinate with other components of the DNA repair machinery in the NHEJ and HR pathways respectively, and their exclusive recruitment to DNA breaks/ends potentially decides the choice of repair by either NHEJ or HR. Recently, Rap1 interacting factor 1 has been identified as an important component of the DNA repair pathway which acts downstream of the ATM/53BP1 to inhibit the 5′–3′ end resection of broken DNA ends, in-turn facilitating NHEJ repair and inhibiting homology directed repair. Rif1 is conserved from yeast to humans but its function has evolved from telomere length regulation in yeast to the maintenance of genome integrity in mammalian cells. Recently its role in the maintenance of genomic integrity has been expanded to include the regulation of chromatin structure, replication timing and intra-S phase checkpoint. We present a summary of these important findings highlighting the various aspects of Rif1 functions and discuss the key implications for genomic integrity.  相似文献   

6.
The Rad6-Rad18 complex mono-ubiquitinates proliferating cell nuclear antigen (PCNA) at the lysine 164 residue after DNA damage and promotes DNA polymerase eta (Poleta)- and Polzeta/Rev1-dependent DNA synthesis. Double-strand breaks (DSBs) of DNA can be repaired by homologous recombination (HR) or non-homologous end-joining (NHEJ), both of which require new DNA synthesis. HO endonuclease introduces DSBs into specific DNA sequences. We have shown that Polzeta and Rev1 localize to HO-induced DSBs in a Mec1-dependent manner and promote Ku-dependent DSB repair. However, Polzeta and Rev1 localize to DSBs independently of PCNA ubiquitination. Here we provide evidence indicating that Rad18-mediated PCNA ubiquitination stimulates DNA synthesis by Polzeta and Rev1 in repair of HO-induced DSBs. Ubiquitination defective PCNA mutation or rad18Delta mutation confers the same DSB repair defect as rev1Delta mutation. Consistent with a role in DSB repair, Rad18 localizes to HO-induced DSBs in a Rad6-dependent manner. Unlike Polzeta or Rev1, Poleta is dispensable for repair of HO-induced DSBs. Ku and DNA ligase IV constitute a central NHEJ pathway. We also show that Polzeta and Rev1 act in the same pathway as DNA ligase IV, suggesting that Polzeta and Rev1 are involved in DNA synthesis during NHEJ. Our results suggest that Polzeta-Rev1 accumulates at regions near DSBs independently of PCNA ubiquitination and then interacts with ubiquitinated PCNA to facilitate DNA synthesis.  相似文献   

7.
The MRN complex in double-strand break repair and telomere maintenance   总被引:1,自引:0,他引:1  
Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.  相似文献   

8.
Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase.  相似文献   

9.
Siz1 and Siz2/Nfi1 are the two Siz/PIAS SUMO E3 ligases in Saccharomyces cerevisiae. Here we show that siz1Delta siz2Delta mutants fail to grow in the absence of the homologous recombination pathway or the Fen1 ortholog RAD27. Remarkably, the growth defects of mutants such as siz1Delta siz2Delta rad52Delta are suppressed by mutations in TOP1, suggesting that these growth defects are caused by topoisomerase I activity. Other mutants that affect SUMO conjugation, including a ulp1 mutant and the nuclear pore mutants nup60Delta and nup133Delta, show similar top1-suppressible synthetic defects with DNA repair mutants, suggesting that these phenotypes also result from reduced SUMO conjugation. siz1Delta siz2Delta mutants also display TOP1-independent genome instability phenotypes, including increased mitotic recombination and elongated telomeres. We also show that SUMO conjugation, TOP1, and RAD27 have overlapping roles in telomere maintenance. Top1 is sumoylated, but Top1 does not appear to be the SUMO substrate involved in the synthetic growth defects. However, sumoylation of certain substrates, including Top1 itself and Tri1 (YMR233W), is enhanced in the absence of Top1 activity. Sumoylation is also required for growth of top1Delta cells. These results suggest that the SUMO pathway has a complex effect on genome stability that involves several mechanistically distinct processes.  相似文献   

10.
Banerjee S  Myung K 《Eukaryotic cell》2004,3(6):1557-1566
Gross chromosomal rearrangements (GCRs) are frequently observed in cancer cells. Abnormalities in different DNA metabolism including DNA replication, cell cycle checkpoints, chromatin remodeling, telomere maintenance, and DNA recombination and repair cause GCRs in Saccharomyces cerevisiae. Recently, we used genome-wide screening to identify several genes the deletion of which increases GCRs in S. cerevisiae. Elg1, which was discovered during this screening, functions in DNA replication by participating in an alternative replication factor complex. Here we further characterize the GCR suppression mechanisms observed in the elg1Delta mutant strain in conjunction with the telomere maintenance role of Elg1. The elg1Delta mutation enhanced spontaneous DNA damage and resulted in GCR formation. However, DNA damage due to inactivation of Elg1 activates the intra-S checkpoints, which suppress further GCR formation. The intra-S checkpoints activated by the elg1Delta mutation also suppress GCR formation in strains defective in the DNA replication checkpoint. Lastly, the elg1Delta mutation increases telomere size independently of other previously known telomere maintenance proteins such as the telomerase inhibitor Pif1 or the telomere size regulator Rif1. The increase in telomere length caused by the elg1Delta mutation was suppressed by a defect in the DNA replication checkpoint, which suggests that DNA replication surveillance by Dpb11-Mec1/Tel1-Dun1 also has an important role in telomere length regulation.  相似文献   

11.
Diverse roles in DNA metabolism have been envisaged for budding yeast and mammalian Rif1. In particular, yeast Rif1 is involved in telomere homeostasis, while its mammalian counterpart participates in the cellular response to DNA double-strand breaks (DSBs). Here, we show that Saccharomyces cerevisiae Rif1 supports cell survival to DNA lesions in the absence of MRX or Sae2. Furthermore, it contributes to the nucleolytic processing (resection) of DSBs. This Rif1-dependent control of DSB resection becomes important for DSB repair by homologous recombination when resection activities are suboptimal.  相似文献   

12.
Shima H  Suzuki M  Shinohara M 《Genetics》2005,170(1):71-85
The Mre11/Rad50/Xrs2 (MRX) complex is involved in DNA damage repair, DNA damage response, telomere control, and meiotic recombination. Here, we constructed and characterized novel mutant alleles of XRS2. The alleles with mutations in the C-terminal conserved domain of Xrs2 were grouped into the same class. Mutant Xrs2 in this class lacked Mre11 interaction ability. The second class, lacking a C-terminal end, showed defects only in telomere control. A previous study showed that this C-terminal end contains a Tel1-association domain. These results indicate that Xrs2 contains two functional domains, Mre11- and Tel1-binding domains. While the Mre11-binding domain is essential for Xrs2 function, the Tel1-binding domain may be essential only for Tel1 function in telomere maintenance. The third class, despite containing a large deletion in the N-terminal region, showed no defects in DNA damage repair. However, some mutants, which showed a reduced level of Xrs2 protein, were partially defective in formation of meiotic DSBs and telomere maintenance. These defects were suppressed by overexpression of the mutant Xrs2 protein. This result suggests that the total amount of Xrs2 protein is a critical determinant for the function of the MRX complex especially with regard to telomere maintenance and meiotic DSB formation.  相似文献   

13.
Mutation of BRCA2 causes familial early onset breast and ovarian cancer. BRCA2 has been suggested to be important for the maintenance of genome integrity and to have a role in DNA repair by homology- directed double-strand break (DSB) repair. By studying the repair of a specific induced chromosomal DSB we show that loss of Brca2 leads to a substantial increase in error-prone repair by homology-directed single-strand annealing and a reduction in DSB repair by conservative gene conversion. These data demonstrate that loss of Brca2 causes misrepair of chromosomal DSBs occurring between repeated sequences by stimulating use of an error-prone homologous recombination pathway. Furthermore, loss of Brca2 causes a large increase in genome-wide error-prone repair of both spontaneous DNA damage and mitomycin C-induced DNA cross-links at the expense of error-free repair by sister chromatid recombination. This provides insight into the mechanisms that induce genome instability in tumour cells lacking BRCA2.  相似文献   

14.
The PA200 proteasome activator is a broadly expressed nuclear protein. Although how PA200 normally functions is not fully understood, it has been suggested to be involved in the repair of DNA double-strand breaks (DSBs). The PA200 gene (Psme4) is composed of 45 coding exons spanning 108 kb on mouse chromosome 11. We generated a PA200 null allele (PA200(Delta)) through Cre-loxP-mediated interchromosomal recombination after targeting loxP sites at either end of the locus. PA200(Delta/Delta) mice are viable and have no obvious developmental abnormalities. Both lymphocyte development and immunoglobulin class switching, which rely on the generation and repair of DNA DSBs, are unperturbed in PA200(Delta/Delta) mice. Additionally, PA200(Delta/Delta) embryonic stem cells do not exhibit increased sensitivity to either ionizing radiation or bleomycin. Thus, PA200 is not essential for the repair of DNA DSBs generated in these settings. Notably, loss of PA200 led to a marked reduction in male, but not female, fertility. This was due to defects in spermatogenesis observed in meiotic spermatocytes and during the maturation of postmeiotic haploid spermatids. Thus, PA200 serves an important nonredundant function during spermatogenesis, suggesting that the efficient generation of male gametes has distinct protein metabolic requirements.  相似文献   

15.
S Moreau  E A Morgan  L S Symington 《Genetics》2001,159(4):1423-1433
MRE11 functions in several aspects of DNA metabolism, including meiotic recombination, double-strand break repair, and telomere maintenance. Although the purified protein exhibits 3' to 5' exonuclease and endonuclease activities in vitro, Mre11 is implicated in the 5' to 3' resection of duplex ends in vivo. The mre11-H125N mutation, which eliminates the nuclease activities of Mre11, causes an accumulation of unprocessed double-strand breaks (DSBs) in meiosis, but no defect in processing HO-induced DSBs in mitotic cells, suggesting the existence of redundant activities. Mutation of EXO1, which encodes a 5' to 3' exonuclease, was found to increase the ionizing radiation sensitivity of both mre11Delta and mre11-H125N strains, but the exo1 mre11-H125N strain showed normal kinetics of mating-type switching and was more radiation resistant than the mre11Delta strain. This suggests that other nucleases can compensate for loss of the Exo1 and Mre11 nucleases, but not of the Mre11-Rad50-Xrs2 complex. Deletion of RAD27, which encodes a flap endonuclease, causes inviability in mre11 strains. When mre11-H125N was combined with the leaky rad27-6, the double mutants were viable and no more gamma-ray sensitive than the mre11-H125N strain. This suggests that the double mutant defect is unlikely to be due to defective DSB processing.  相似文献   

16.
Repair of DNA double‐stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non‐homologous end‐joining (NHEJ) or error‐free homologous recombination. NHEJ precedes either by a classic, Lig4‐dependent process (C‐NHEJ) or an alternative, Lig4‐independent one (A‐NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere‐binding proteins are recognized as DSBs. In this report, we studied which end‐joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end‐to‐end chromosome fusions mediated by the C‐NHEJ pathway. In contrast, removal of Tpp1–Pot1a/b initiated robust chromosome fusions that are mediated by A‐NHEJ. C‐NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A‐NHEJ is a major pathway to process dysfunctional telomeres.  相似文献   

17.
Farah JA  Cromie G  Davis L  Steiner WW  Smith GR 《Genetics》2005,171(4):1499-1511
Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Delta mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Delta rec12Delta strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms.  相似文献   

18.
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.  相似文献   

19.
Werner syndrome is associated with premature aging and increased risk of cancer. Werner syndrome protein (WRN) is a RecQ-type DNA helicase, which seems to participate in DNA replication, double-strand break (DSB) repair, and telomere maintenance; however, its exact function remains elusive. Using Xenopus egg extracts as the model system, we found that Xenopus WRN (xWRN) is recruited to discrete foci upon induction of DSBs. Depletion of xWRN has no significant effect on nonhomologous end-joining of DSB ends, but it causes a significant reduction in the homology-dependent single-strand annealing DSB repair pathway. These results provide the first direct biochemical evidence that links WRN to a specific DSB repair pathway. The assay for single-strand annealing that was developed in this study also provides a powerful biochemical system for mechanistic analysis of homology-dependent DSB repair.  相似文献   

20.
Def1p is involved in telomere maintenance in budding yeast   总被引:3,自引:0,他引:3  
Saccharomyces Rrm3p, a member of Pif1 5'-3' DNA helicase subfamily, helps replication forks traverse protein-DNA complexes, including the telomere. Here we have identified an Rrm3p interaction protein known to be Def1p. In def1 mutants, telomeres were approximately 200-bp shorter than that in wild-type cells. DEF1 is also required for the stable maintenance of mitochondrial DNA, and the telomere shortening phenotype seen in def1 cells is not a secondary consequence of the mitochondrion defect. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted in an accelerated senescence phenotype, suggesting that Def1p is not involved in the telomerase recruitment pathway. In the absence of telomerase, cells escape senescence by either amplifying Y' regions or TG-telomeric repeats to generate type I or type II survivors, respectively. Only type I survivors were recovered from both def1Delta est2Delta and def1Delta est3Delta double mutant cells, further suggesting that the function of Def1p in telomere maintenance is specific. Our novel findings of the functions of Def1p in telomere and mitochondria suggested that Def1p plays multiple roles in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号