首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm   总被引:11,自引:0,他引:11  
In animals with binocular vision, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. Here, we show that ephrin-Bs in the chiasm region direct the divergence of retinal axons through the selective repulsion of a subset of RGCs that express EphB1. Ephrin-B2 is expressed at the mouse chiasm midline as the ipsilateral projection is generated and is selectively inhibitory to axons from ventrotemporal (VT) retina, where ipsilaterally projecting RGCs reside. Moreover, blocking ephrin-B2 function in vitro rescues the inhibitory effect of chiasm cells and eliminates the ipsilateral projection in the semiintact mouse visual system. A receptor for ephrin-B2, EphB1, is found exclusively in regions of retina that give rise to the ipsilateral projection. EphB1 null mice exhibit a dramatically reduced ipsilateral projection, suggesting that this receptor contributes to the formation of the ipsilateral retinal projection, most likely through its repulsive interaction with ephrin-B2.  相似文献   

3.
In Xenopus tadpoles, all retinal ganglion cells (RGCs) send axons contralaterally across the optic chiasm. At metamorphosis, a subpopulation of EphB-expressing RGCs in the ventrotemporal retina begin to project ipsilaterally. However, when these metamorphic RGCs are grafted into embryos, they project contralaterally, suggesting that the embryonic chiasm lacks signals that guide axons ipsilaterally. Ephrin-B is expressed discretely at the chiasm of metamorphic but not premetamorphic Xenopus. When expressed prematurely in the embryonic chiasm, ephrin-B causes precocious ipsilateral projections from the EphB-expressing RGCs. Ephrin-B is also found in the chiasm of mammals, which have ipsilateral projections, but not in the chiasm of fish and birds, which do not. These results suggest that ephrin-B/EphB interactions play a key role in the sorting of axons at the vertebrate chiasm.  相似文献   

4.
A role for Nr-CAM in the patterning of binocular visual pathways   总被引:2,自引:0,他引:2  
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.  相似文献   

5.
The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin‐B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin‐B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin‐B2, we utilized time‐lapse imaging to characterize the effects of ephrin‐B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin‐B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally‐projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally‐projecting ventronasal axons are less sensitive to ephrin‐B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 781–794, 2010  相似文献   

6.
7.
The effects of removing chondroitin sulfate from chondroitin sulfate proteoglycan molecules on guidance of retinal ganglion cell axons at the optic chiasm were investigated in a brain slice preparation of mouse embryos of embryonic day 13 to 15. Slices were grown for 5 hours and growth of dye-labeled axons was traced through the chiasm. After continuous enzymatic digestion of the chondroitin sulfate proteoglycans with chondroitinase ABC, which removes the glycosaminoglycan chains, navigation of retinal axons was disrupted. At embryonic day 13, before the uncrossed projection forms in normal development, many axons deviated from their normal course, crossing the midline at aberrant positions and invading the ventral diencephalon. In slices from embryonic day 14 embryos, axons that would normally form the uncrossed projection at this stage failed to turn into the ipsilateral optic tract. In embryonic day 15 slices, enzyme treatment caused a reduction of the uncrossed projection that develops at this stage. Growth cones in enzyme-treated slices showed a significant increase in the size both before and after they crossed the midline. This indicates that responses of retinal axons to guidance signals at the chiasm have changed after removal of the chondroitin sulfate epitope. We concluded that the chondroitin sulfate moieties of the proteoglycans are involved in patterning the early phase of axonal growth across the midline and at a later stage controlling the axon divergence at the chiasm.  相似文献   

8.
To assay the axon tract organizing capabilities of different regions of the vertebrate CNS, Mauthner axons were redirected by grafting supernumerary hindbrains in Xenopus embryos. The 63 redirected Mauthner axons thus produced included donor axons projecting into the host CNS and host axons that grew through the graft or that were redirected in the host CNS. Two major phenomena were observed. Caudal to the optic chiasm, the Mauthner axons followed a single ipsilateral stereotyped route—the basal substrate pathway—extending in the ventral and ventrolateral marginal zone from the diencephalon to the caudal spinal cord. In contrast, rostral to the optic chiasm, these same Mauthner axons followed variable ipsilateral and contralateral routes. Even pairs of Mauthner axons entering the optic chiasm side-by-side eventually followed different routes in normal forebrains. The contrasting behaviors of the Mauthner axons growing in the rostral diencephalon and telencephalon and of the same Mauthner axons growing elsewhere suggest that there are differences in the effective guidance cues between these two regions of the developing brain. This is consistent with other types of neuroanatomical and neuroembryological evidence indicating a fundamental division between the rostral and the caudal diencephalon.  相似文献   

9.
10.
11.
In the retinotectal projection, the Eph receptor tyrosine kinase ligands ephrinA2 and ephrinA5 are differentially expressed not only in the tectum, but also in a high-nasal-to-low-temporal pattern in the retina. Recently, we have shown that retrovirally driven overexpression of ephrinA2 on retinal axons leads to topographic targeting errors of temporal axons in that they overshoot their normal termination zones in the rostral tectum and project onto the mid- and caudal tectum. The behavior of nasal axons, however, was only marginally affected. Here, we show that overexpression of ephrinA5 affects the topographic targeting behavior of both temporal and nasal axons. These data reinforce the idea that differential ligand expression on retinal axons contributes to topographic targeting in the retinotectal projection. Additionally, we found that ectopic expression of ephrinA2 and ephrinA5 frequently leads to pathfinding errors at the chiasm, resulting in an increased stable ipsilateral projection.  相似文献   

12.
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively labelled by unilateral tract implants of DiI. The earliest ipsilaterally projecting ganglion cells are located in the dorsal central retina. The first sign of the adult pattern of distribution of ganglion cells with uncrossed axons located mainly in the ventrotemporal retina is seen on embryonic day 16.5, thus showing that the adult line of decussation forms early in development. A small number of labelled cells continue to be found in nasal and dorsal retina at all later stages. At early stages (E14-15), retrogradely labelled uncrossed fibres are found in virtually all fascicles of the developing nerve, intermingling with crossed axons throughout the length of the nerve. At later stages of development (E16-17), although uncrossed fibres pass predominantly within the temporal part of the stalk, they remain intermingled with crossed axons. A significant number of uncrossed axons also lie within the nasal part of the optic stalk. The position of uncrossed fibres throughout the nerve in the later developmental stages is comparable to that seen in the adult rodent (Baker and Jeffery, 1989). The distribution of uncrossed axons thus indicates that positional cues are not sufficient to account for the choice made by axons when they reach the optic chiasm.  相似文献   

13.
During development, the axons of retinal ganglion cell (RGC) neurons must decide whether to cross or avoid the midline at the optic chiasm to project to targets on both sides of the brain. By combining genetic analyses with in vitro assays, we show that neuropilin 1 (NRP1) promotes contralateral RGC projection in mammals. Unexpectedly, the NRP1 ligand involved is not an axon guidance cue of the class 3 semaphorin family, but VEGF164, the neuropilin-binding isoform of the classical vascular growth factor VEGF-A. VEGF164 is expressed at the chiasm midline and is required for normal contralateral growth in vivo. In outgrowth and growth cone turning assays, VEGF164 acts directly on NRP1-expressing contralateral RGCs to provide growth-promoting and chemoattractive signals. These findings have identified a permissive midline signal for axons at the chiasm midline and provide in vivo evidence that VEGF-A is an essential axon guidance cue.  相似文献   

14.
At the optic chiasm, retinal ganglion cells (RGCs) project ipsi- or contralaterally to establish the circuitry for binocular vision. Ipsilateral guidance programs have been characterized, but contralateral guidance programs are not well understood. Here, we identify a tripartite molecular system for contralateral RGC projections: Semaphorin6D (Sema6D) and Nr-CAM are expressed on midline radial glia and Plexin-A1 on chiasm neurons, and Plexin-A1 and Nr-CAM are also expressed on contralateral RGCs. Sema6D is repulsive to contralateral RGCs, but Sema6D in combination with Nr-CAM and Plexin-A1 converts repulsion to growth promotion. Nr-CAM functions as a receptor for Sema6D. Sema6D, Plexin-A1, and Nr-CAM are all required for efficient RGC decussation at the optic chiasm. These findings suggest a mechanism by which a complex of Sema6D, Nr-CAM, and Plexin-A1 at the chiasm midline alters the sign of Sema6D and signals Nr-CAM/Plexin-A1 receptors on RGCs to implement the contralateral RGC projection.  相似文献   

15.
在大白鼠视束和上丘注射HRP作逆行标记表明,向对侧中枢投射的神经节细胞遍布视网膜各处,而同侧投射的细胞大部分位于颞下侧边缘的新月形区域内,少数细胞分布在此区以外。与视束注射比较,上丘注射时同侧视网膜颞新月区内标记细胞数大为减少。统计测量表明,同侧投射细胞胞体直径平均比对侧投射细胞的略长。文中对上述结果的生理学意义进行了讨论。  相似文献   

16.
17.

Background

During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear.

Methodology/Principal Findings

We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype.

Conclusions

Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system.  相似文献   

18.
Transplantation of neural stem cells for replacing neurons after neurodegeneration requires that the transplanted stem cells accurately reestablish the lost neural circuits in order to restore function. Retinal ganglion cell axons project to visual centers of the brain forming circuits in precise topographic order. In chick, dorsal retinal neurons project to ventral optic tectum, ventral neurons to dorsal tectum, anterior neurons to posterior tectum and posterior neurons to anterior tectum; forming a continuous point-to-point map of retinal cell position in the tectal projection. We found that when stem cells derived from ventral retina were implanted in dorsal host retina, the stem cells that became ganglion cells projected to dorsal tectum, appropriate for their site of origin in retina but not appropriate for their site of implant in retina. This led us to ask if retinal progenitors exhibit topographic markers of cell position in retina. Indeed, retinal neural progenitors express topographic markers: dorsal stem cells expressed more Ephrin B2 than ventral stem cells and, conversely, ventral stem cells expressed more Pax-2 and Ventroptin than dorsal stem cells. The fact that neural progenitors express topographic markers has pertinent implications in using neural stem cells in cell replacement therapy for replacing projecting neurons that express topographic order, e.g., analogous neurons of the visual, auditory, somatosensory and motor systems.  相似文献   

19.
Anatomical mapping was made of the retinal central pathways from the chiasm to the targets within the tectum in the developing Xenopus tadpoles, after labeling a specific regional population of retinal axons with horseradish peroxidase (HRP). In the tadpoles at stage 50, pathway sorting of retinal axons within the optic tract was clear for the dorsoventral axis of the retina, but not for the nasotemporal axis. Most nasal retinal axons and some dorsal and ventral retinal axons invaded the tectum directly at the diencephalotectal junction, and arrived at their correct sites of innervation after running through ectopic parts of the tectum. These findings indicate that the pathway orientation before targets is not a prerequisite factor for establishment of the orderly map of the retinotectal projection. Rather, a direct interaction between ingrowing retinal axons and tectal cells seems to be a predominant factor for specification of retinal central connections.  相似文献   

20.
Retinal explants of mouse embryos were cultured together with explants of different regions in the retinofugal pathway in order to investigate whether ventral temporal (VT) and dorsal nasal (DN) retinal neurites showed differential responses to regional-specific cues in the pathway. In the presence of the chiasm, biased outgrowth of retinal neurites was found in explants of both retinal regions, which was accompanied by a reduction in total neurite growth in the VT but not the DN retina. Such differential responses to the diffusible negative influence were also observed when explants of two retinal origins were cocultured with the ventral diencephalon, but were not found with the dorsal diencephalon that contains targets of the optic axons. Indeed, extensive neurite invasion was found in the dorsal diencephalic explants and this ingrowth was more prominent for VT than DN neurites, showing a difference in axons from a distinct position in the retina to contact-mediated stimulatory activity within the target nuclei. We conclude that neurites from different regions of the retina show differential responses to the regional-specific cues in the diencephalon. These cues exist in both diffusible and contact-mediated forms that may shape the characteristic course and organization of retinal axons in decision regions of the optic pathway and the visual targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号