首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatozoa are cells distinctly different from other somatic cells of the body, capacitation being one of the unique phenomena manifested by this gamete. We have shown earlier that dihydrolipoamide dehydrogenase, a post-pyruvate metabolic enzyme, undergoes capacitation-dependent tyrosine phosphorylation, and the functioning of the enzyme is required for hyperactivation (enhanced motility) and acrosome reaction of hamster spermatozoa (Mitra, K., and Shivaji, S. (2004) Biol. Reprod. 70, 887-899). In this report we have investigated the localization of this mitochondrial enzyme in spermatozoa revealing non-canonical extra-mitochondrial localization of the enzyme in mammalian spermatozoa. In hamster spermatozoa, dihydrolipoamide dehydrogenase along with its host complex, the pyruvate dehydrogenase complex, are localized in the acrosome and in the principal piece of the sperm flagella. The localization of dihydrolipoamide dehydrogenase, however, appears to be in the mitochondria in the spermatocytes, but in spermatids it appears to show a juxtanuclear localization (like Golgi). The capacitation-dependent time course of tyrosine phosphorylation of dihydrolipoamide dehydrogenase appears to be different in the principal piece of the flagella and the acrosome in hamster spermatozoa. Activity assays of this bi-directional enzyme suggest a strong correlation between the tyrosine phosphorylation and the bi-directional enzyme activity. This is the first report of a direct correlation of the localization, tyrosine phosphorylation, and activity of the important metabolic enzyme, dihydrolipoamide dehydrogenase, implicating dual involvement and regulation of the enzyme during sperm capacitation.  相似文献   

2.
Unravelling the molecular basis of capacitation is crucial to our understanding the basis of acquisition of fertilization competence by spermatozoa. In two recent studies, we have demonstrated that dihydrolipoamide dehydrogenase, which is a post-pyruvate metabolic enzyme and one of the components of pyruvate dehydrogenase complex, undergoes capacitation-dependent tyrosine phosphorylation, and that the activity of the enzyme correlates with capacitation events in the hamster spermatozoa. However, it is not clear as to whether other components of the pyruvate dehydrogenase complex are also crucial for sperm capacitation. In this report, we have identified pyruvate dehydrogenase A2 (PDHA2), a constituent of pyruvate dehydrogenase A (PDHA), which is a component of pyruvate dehydrogenase complex that exhibits tyrosine phosphorylation during hamster spermatozoal capacitation. This is the first report showing that hamster sperm PDHA2 is a testis-specific phosphotyrosine that is associated with the fibrous sheath of hamster spermatozoa. The localization of PDHA2 in spermatozoa was investigated using antibodies to PDHA, which is the active tetrameric protein that consists of a homodimer of PDHA2 and PDHB. Both immunofluorescence and confocal studies indicated a unique non-canonical, extramitochondrial localization for PDHA in the principal piece of hamster spermatozoa. It was also observed that PDHA colocalized with AKAP4 in the fibrous sheath of the spermatozoon. The enzymatic activity of PDHA was positively correlated with hyperactivation but not with the acrosome reaction. Given the localization of PDHA and the evidence that its activity correlates positively with hyperactivation and that its PDHA2 subunit exhibits capacitation-associated protein tyrosine phosphorylation, it appears that PDHA2 is associated with the process of capacitation.  相似文献   

3.
Recently, we demonstrated that pyruvate dehydrogenase A2 (PDHA2) is tyrosine phosphorylated in capacitated hamster spermatozoa. In this report, using bromopyruvate (BP), an inhibitor of PDHA, we demonstrated that hamster sperm hyperactivation was blocked regardless of whether PDHA was inhibited prior to or after the onset of hyperactivation, but the acrosome reaction was blocked only if PDHA was inhibited prior to the onset of the acrosome reaction. Further, inhibition of PDHA activity did not inhibit capacitation-associated protein tyrosine phosphorylation observed in hamster spermatozoa. It is demonstrated that the essentiality of PDHA for sperm capacitation is probably dependent on its ability to generate effectors of capacitation such as reactive oxygen species (ROS) and cAMP, which are significantly decreased in the presence of BP. MICA (5-methoxyindole-2-carboxylic acid, a specific inhibitor of dihydrolipoamide dehydrogenase [DLD]), another component of the pyruvate dehydrogenase complex (PDHc), also significantly inhibited ROS generation and cAMP levels thus implying that these enzymes of the PDHc are required for ROS and cAMP generation. Furthermore, dibutryl cyclic adenosine monophosphate could significantly reverse the inhibition of hyperactivation observed in the presence of BP and inhibition of acrosome reaction observed in the presence of BP or MICA. The calcium ionophore, A23187, could also significantly reverse the inhibitory effect of BP and MICA on sperm acrosome reaction. These results establish that PDHA is required for hamster sperm hyperactivation and acrosome reaction, and DLD is required for hamster acrosome reaction. This study also provides evidence that ROS, cAMP, and calcium are involved downstream to PDHA.  相似文献   

4.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

5.
In an attempt to understand the role of nitric oxide(NO) in sperm capacitation, in the present study, hamster spermatozoa were used to evaluate the effects of NO on motility, viability, hyperactivation, capacitation and protein tyrosine and serine phosphorylation using specific inhibitors of nitric oxide synthase (NOS); namely L-NAME (N-nito-L-aginine methyl ester) and 7-Ni (7-nitroindazole). The results indicated that L-NAME inhibits sperm motility, hyperactivation and acrosome reaction where as 7-Ni inhibits only hyperactivation and acrosome reaction thus implying that NOS inhibitors exhibit subtle differences with respect to their effects on sperm functions. This study also provides evidence that NOS inhibitors inhibit sperm capacitation by their ability to modulate protein tyrosine phosphorylation. However, the inhibitors had no effect on the protein serine phosphorylation of hamster spermatozoa during capacitation. Thus, these results indicate that NO is required  相似文献   

6.
Monoclonal antibodies against phosphoserine and phosphothreonine were used in the present study to investigate the changes in serine and threonine phosphorylation respectectively during capacitation of hamster spermatozoa. Immunoblot analysis of hamster spermatozoa capacitated in TALP, a medium that supports capacitation, showed that a set of four proteins of molecular weight 56, 63, 66, and 100 kDa was phosphorylated both at the serine and threonine residues. In addition, five other proteins of molecular weight 32, 39, 45, 53, and 61 kDa were phosphorylated specifically at the threonine residues. Of these nine proteins, the 100 kDa protein showed a time dependent or capacitation-dependent decrease in intensity which coincided with the percentage acrosome-reacted spermatozoa. In contrast, the 49 and 63 kDa threonine phosphorylated proteins showed increased phosphorylation coinciding with capacitation. H8 (a serine and threonine kinase inhibitor) had a transient effect on the phosphorylation of these two phosphothreonine proteins but inhibited acrosome reaction substantially all through the treatment period. Okadaic acid (OA) (a serine and threonine protein phosphatase inhibitor) inhibited hyperactivation but had no effect on acrosome reaction. In fact, OA stimulated acrosome reaction. Finally the immunofluorescence studies indicated localization of the serine phosphorylated proteins in tail as well as in head of the capacitated hamster spermatozoa whereas the threonine phosphorylated proteins were localized mostly in the tail of the spermatozoa. The findings of the present study suggest that serine/threonine phosphorylation and the enzymes responsible for regulating the level of phosphorylation play an important role in capacitation and capacitation-associated events namely hyperactivation and acrosome reaction. However, further studies are needed in order to establish the exact role of these proteins in capacitation of spermatozoa.  相似文献   

7.
The mammalian sperm acrosome reaction is a unique form of exocytosis, which includes the loss of the involved membranes. Other laboratories have suggested the involvement of hydrolytic enzymes in somatic cell exocytosis and membrane fusion, and in the invertebrate sperm acrosome reaction, but there is no general agreement on such an involvement. Although reference was made to such work in this review, the focus of the review was on the evidence (summarized below) that supports or fails to support the importance of certain hydrolytic enzymes to the mammalian sperm acrosome reaction. Because the events of capacitation, the prerequisite for the mammalian acrosome reaction, and of the acrosome reaction itself are not fully understood or identified, it is not yet always possible to determine whether the role of a particular enzyme is in a very late step of capacitation or part of the acrosome reaction. (1) The results of studies utilizing inhibitors of trypsin-like enzymes suggest that such an enzyme has a role in the membrane events of the golden hamster sperm acrosome reaction. The enzyme involved may be acrosin, but it is possible that some as yet unidentified trypsin-like enzyme on the sperm surface may play a role in addition to or instead of acrosin. Results obtained by others with guinea pig, ram and mouse spermatozoa suggest that a trypsin-like enzyme is not involved in the membrane events of the acrosome reaction, but only in the loss of acrosomal matrix. Such results, which conflict with those of the hamster study, may have been due to species differences or the presence of fusion-promoting phospholipase-A or lipids contaminating the incubation media components, and in one case to the possibly damaging effects of the high level of calcium ionophore used. The role of the trypsin-like enzyme in the membrane events of the hamster sperm acrosome reaction may be to activate a putative prophospholipase and/or to hydrolyse an outer acrosomal or plasma membrane protein, thus promoting fusion. A possible role of the enzyme in the vesiculation step rather than the fusion step of the acrosome reaction cannot be ruled out at present. (2) Experiments utilizing inhibitors of phospholipase-A2, as well as the fusogenic lysophospholipid and cis-unsaturated fatty acid hydrolysis products that would result from such enzyme activity, suggests that a sperm phospholipase-A2 is involved in the golden hamster sperm acrosome reaction. Inhibitor and LPC addition studies in guinea pig spermatozoa have led others to the same conclusion. The fact that partially purified serum albumin is important in so many capacitation media may be explained by its contamination with phospholipase-A and/or phospholipids. Serum albumin may also play a role, at least in part, by its removal of inhibitory products released by the action of phospholipase-A2 in the membrane. The demonstration of phospholipase-A2 activity associated with the acrosome reaction vesicles and/or the soluble component of the acrosome of hamster spermatozoa, and the fact that exogenous phospholipase A2 can stimulate acrosome reactions in hamster and guinea pig spermatozoa, also support a role for the sperm enzyme. The actual site or the sites of the enzyme in the sperm head are not yet known. The enzyme may be on the plasma membrane as well as, or instead of, in the acrosomal membranes or matrix. A substrate for the phospholipase may be phosphatidylcholine produced by phospholipid methylation. It is possible that more than one type of ‘fusogen’ is released by phospholipase activity (LPC and/or cis-unsaturated fatty acids, which have different roles in membrane fusion and/or vesiculation. In addition to acting as a potential ‘fusogen’, arachidonic acid released by sperm phospholipase-A2 probably serves as precursor for cyclo-oxygenase or lipoxygenase pathway metabolites, such as prostaglandins and HETES, which might also play a role in the acrosome reaction. Although much evidence points to a role for phospholipase-A2, phospholipase-C found in spermatozoa could also have a role in the acrosome reaction, perhaps by stimulating events leading to calcium gating, as suggested for this enzyme in somatic secretory cells. (3) A Mg2+-ATPase H+-pump is present in the acrosome of the golden hamster spermatozoon. Inhibition of this pump by certain inhibitors of ATPases (but not by those that only inhibit mitochondrial function) leads to an acrosome reaction only in capacitated spermatozoa and only in the presence of external K+. The enzyme is also inhibited by low levels of calcium, and such inhibition, combined with increased outer membrane permeability to H+ and K+, and possibly plasma membrane permeability to H+ (perhaps by the formation of channels), may be part of capacitation and/or the acrosome reaction. The pH of the hamster sperm acrosome has been shown to become more alkaline during capacitation, and such a change may result in the activation of hydrolytic enzymes in the acrosome or perhaps in a change in membrane permeability to Ca2+. A similar Mg2+-ATPase has not been found in isolated boar sperm head membranes. However, that conflicting result could have been due to the use of noncapacitated boar spermatozoa for the preparation of the membranes or to protease modification of the boar sperm enzyme during assay. (4) Inhibition of Na+, K+-ATPase inhibits the acrosome reaction of golden hamster spermatozoa, and the activity of this enzyme increases relatively early during capacitation. A late influx of K+ is important for the acrosome reaction. However, this late influx may not be due to Na+, K+-ATPase, but instead may be due to a K+ permeability increase (possibly via newly formed channels) in the membranes during capacitation. It is suggested in this review that Na+, K+-ATPase has a role early in capacitation rather than directly in the acrosome reaction (although such a role cannot yet be completely ruled out). One possible role for the enzyme in capacitation might be to stimulate glycolysis (which appears to be essential for capacitation and/or the acrosome reaction of hamster and mouse spermatozoa). The function of the influx of K+ just before the acrosome reaction is probably to stimulate, directly or indirectly, the H+-efflux required for the increase in intraacrosomal pH occurring during capacitation. Direct stimulation of the acrosome reaction by a change in membrane potential resulting directly from K+-influx is not a likely explanation for the hamster results. However, the importance of an earlier membrane potential change, due to increased Na+, K+-ATPase during capacitation, and/or of later membrane potential changes resulting from the pH change, cannot be ruled out. Although K+ is required for the hamster acrosome reaction, other workers have reported that K+ inhibits guinea pig sperm capacitation. However, the experimental procedures used in the guinea pig sperm studies raise some questions about the interpretation of those inhibition results. (5) Ca2+-influx is known to be required for the acrosome reaction. Others have suggested that increased Ca2+-influx due to inhibition or stimulation of sperm membrane calcium transport ATPases are involved in the acrosome reaction. There is as yet no direct or indirect biochemical evidence that inhibition or stimulation of such enzymatic activity is involved in the acrosome reaction, and further studies are needed on those questions. (6) I suggest that the hydrolytic enzymes important to the hamster sperm acrosome reaction will also prove important for the acrosome reaction of all other eutherian mammals.  相似文献   

8.
Mammalian sperm acrosomes contain a trypsin-like protease called acrosin which causes limited and specific hydrolysis of the extracellular matrix of the mammalian egg, the zona pellucida. Acrosin was localized on hamster, guinea-pig and human sperm using monoclonal and polyclonal antibodies to human acrosin labelled with colloidal gold. This was visualized directly with transmission electron microscopy, and with light and scanning microscopy after silver enhancement of the colloidal gold probe. Four distinct labelling patterns were found during capacitation and the acrosome reaction in hamster and guinea-pig spermatozoa, and three patterns were found in human spermatozoa. In the hamster, acrosin was not detected on the inner acrosomal surface after the completion of the acrosome reaction, thus correlating with the observation that hamster spermatozoa lose the ability to penetrate the zona after the acrosome reaction. With guinea-pig and human spermatozoa, acrosin was still detected after the completion of the acrosome reaction, thus correlating with the observation that acrosome reacted guinea-pig spermatozoa bind to and penetrate the zona pellucida.  相似文献   

9.
Protein tyrosine phosphorylation in spermatozoa is associated with epididymal maturation and though to be central for attainment of a capacitated state and expression of hyperactivated motility. Heparin, the most highly sulfated glycosaminoglycans, was also the most potent at stimulating the acrosomal reaction in bovine epididymal spermatozoa. Studies using radiolabeled inorganic phosphate showed 11-fold increase (32)Pi incorporation in heparin-binding sperm membrane protein (HBSM) during spermatozoal capacitation, and the phosphorylation occurs at the tyrosine residue. Epididymal spermatozoa were induced to undergo capacitation and acrosome reaction by 70% when the cells were incubated in BWW medium supplemented with heparin. The spermatozoa pre-treated with anti-HBSM antibody showed 46% reduction in the hyperactivated motility and lowers the acrosome reaction. This was confirms by measuring the hydrolysis of benzoyl-l-arginine ethyl ether (BAEE) by the acrosomal enzyme; acrosin. The preliminary finding suggests that HBSM may play an important role in the sperm capacitation and acrosome reaction.  相似文献   

10.
哺乳动物的受精过程涉及到精子一系列的功能活动,如精子在雌性生殖道的运行、精子的超活化与获能、顶体反应以及精卵融合等。在精子经历的这一系列过程中,精子功能相关的蛋白质发挥着不可或缺的作用,这些蛋白分子的正常与否与雄性个体的繁殖力高低密切相关,因此精子功能相关的蛋白质能够作为评定哺乳动物精液受精能力的生物标记。文章主要对哺乳动物精子功能相关的蛋白质进行了综述,以阐述相关蛋白分子对精子运动活力、精子获能、顶体反应、透明带穿入和精卵融合等方面的重要作用以及这些蛋白分子在家畜遗传改良上的潜在应用。  相似文献   

11.
A study was conducted on the induction of buffalo sperm capacitation and acrosome reaction in the excised reproductive tract of hamsters at the estrogen- and progesterone-dominated stages of estrus. The percentages of the maximum capacitation and acrosome reaction were significatly (P < 0.01) higher for spermatozoa incubated in the uterus with oviducts of estrogen dominated hamsters compared with those incubated in BWW medium in a test tube (64.6%, 60.2%; 16.2%, 14.7%). Buffalo spermatozoa incubated in the uterus and oviducts of progesterone-dominated hamsters showed significantly (P < 0.01) lower capacitation and acrosome reaction rates than those incubated in the uterus and oviducts of estrogen-dominated hamsters (34.8%, 34.3%: 64.6%, 60.2%). The percentage of capacitation and acrosome reaction in spermatozoa were significantly (P < 0.01) more when incubated in the uterus plus oviducts than without the oviduct irrespective of whether the reproduct tract of hamster was estrogen- or progesterone-dominated. The time for the onset of maximum capacitation and acrosome reaction was reduced from 12 to 10 h when the spermatozoa were incubated in the hamster reproductive tract rather than in BWW medium in test tubes. The significance of the results in relation to hormonal regulation of sperm capaciation and acrosome reaction are also discussed.  相似文献   

12.
The involvement of a kallikrein−kinin system in the motility of mammalian spermatozoa has been suggested by several investigators. We found that incorporation of kallikrein (0.1–1.0) unit/ml) in the sperm incubation medium did not enhance the motility of hamster spermatozoa that were already active. However, this enzyme significantly increased the incidence of the acrosome reaction. Trypsin (1.8–18 units/ml) and chymotrypsin (0.34–3.4 units/ml) also increased the incidence of the acrosome reaction, and accelerated its onset. Kinins (bradykinin and kallidin) added to the medium in a wide concentration range (1 ng/ml to 1 mg/ml) had no marked effects on either the motility or the acrosome reaction. A kallikrein−kinin system is apparently not of primary importance at least for the acrosome reaction. The enhancement of the acrosome reaction by exogenous proteinases may be due in part to accelerated removal or alteration of the sperm surface coat (glycoprotein) by the enzyme peior to the acrosome reaction. Exogenous proteinases may also act synergistically with endogenous (acrosomal) proteinases (and other enzymes) in altering membrane proteins and dispersing the acrosome matrix during the course of teh acrosome reaction.  相似文献   

13.

Background/Aims

The importance of sperm capacitation for mammalian fertilization has been confirmed in the present study via sperm metabolism. Involvement of the metabolic enzymes pyruvate dehydrogenase complex (PDHc) and its E3 subunit, dihydrolipoamide dehydrogenase (DLD) in hamster in vitro fertilization (IVF) via in vitro sperm capacitation is being proposed through regulation of sperm intracellular lactate, pH and calcium.

Methodology and Principal Findings

Capacitated hamster spermatozoa were allowed to fertilize hamster oocytes in vitro which were then assessed for fertilization, microscopically. PDHc/DLD was inhibited by the use of the specific DLD-inhibitor, MICA (5-methoxyindole-2-carboxylic acid). Oocytes fertilized with MICA-treated (MT) [and thus PDHc/DLD-inhibited] spermatozoa showed defective fertilization where 2nd polar body release and pronuclei formation were not observed. Defective fertilization was attributable to capacitation failure owing to high lactate and low intracellular pH and calcium in MT-spermatozoa during capacitation. Moreover, this defect could be overcome by alkalinizing spermatozoa, before fertilization. Increasing intracellular calcium in spermatozoa pre-IVF and in defectively-fertilized oocytes, post-fertilization rescued the arrest seen, suggesting the role of intracellular calcium from either of the gametes in fertilization. Parallel experiments carried out with control spermatozoa capacitated in medium with low extracellular pH or high lactate substantiated the necessity of optimal sperm intracellular lactate levels, intracellular pH and calcium during sperm capacitation, for proper fertilization.

Conclusions

This study confirms the importance of pyruvate/lactate metabolism in capacitating spermatozoa for successful fertilization, besides revealing for the first time the importance of sperm PDHc/ DLD in fertilization, via the modulation of sperm intracellular lactate, pH and calcium during capacitation. In addition, the observations made in the IVF studies in hamsters suggest that capacitation failures could be a plausible cause of unsuccessful fertilization encountered during human assisted reproductive technologies, like IVF and ICSI. Our studies indicate a role of sperm capacitation in the post-penetration events during fertilization.  相似文献   

14.
Spermatozoa within one sample do not appear to complete the capacitation process at the same rate. This could reflect a population composed of cells of different absolute age and thus of different maturational state, or the existence of inherent programmed differences among subpopulations of spermatozoa in regard to their capacitation potential. To explore this question, hamster spermatozoa aged within the range of their viable life in the cauda epididymidis were assessed, in comparison with controls, for onset of the acrosome reaction (AR) and hyperactivation as a function of capacitation time in vitro. Aging spermatozoa in the cauda epididymidis beyond the normal period did not synchronize onset of the AR among them. Such aging merely suppressed the ability of a major (late-reacting) segment of the motile population to react and, coincidentally, reduced their fertilization performance in vivo. Experiments using the calcium ionophore A 23187 indicate that these subtle epididymal aging effects reflected in the function--but not motility--of spermatozoa probably are exerted on the regulation of ion channels in the plasmalemma. We conclude that the asynchrony of onset of the AR and hyperactivation during capacitation probably reflects inherent or programmed differences among spermatozoa. The fact that moderate aging tends to suppress the ability of many motile spermatozoa to react and to fertilize in vivo suggests that an optimal functional state can persist in the cauda for not much longer than spermatozoa remain there before normal replacement by younger cells.  相似文献   

15.
To acquire fertilizing potential, mammalian spermatozoa must undergo capacitation and acrosome reaction. Our earlier work showed that pentoxifylline (0.45 mM), a sperm motility stimulant, induced an early onset of hamster sperm capacitation associated with tyrosine phosphorylation of 45-80 kDa proteins, localized to the mid-piece of the sperm tail. To assess the role of protein tyrosine phosphorylation in sperm capacitation, we used tyrphostin-A47 (TP-47), a specific protein tyrosine kinase inhibitor. The dose-dependent (0.1-0.5 mM) inhibition of tyrosine phosphorylation by TP-47 was associated with inhibition of hyperactivated motility and 0.5 mM TP-47-treated spermatozoa exhibited a distinct circular motility pattern. This was accompanied by hypo-tyrosine phosphorylation of 45-60 kDa proteins, localized to the principal piece of the intact-sperm and the outer dense fiber-like structures in detergent treated-sperm. Sperm kinematic analysis (by CASA) of spermatozoa, exhibiting circular motility (at 1st hr), showed lower values of straight line velocity, curvilinear velocity and average path velocity, compared to untreated controls. Other TP-47 analogues, tyrphostin-AG1478 and -AG1296, had no effect either on kinematic parameters or sperm protein tyrosine phosphorylation. These studies indicate that TP-47-induced circular motility of spermatozoa is compound-specific and that the tyrosine phosphorylation status of 45-60 kDa flagellum-localized proteins could be key regulators of sperm flagellar bending pattern, associated with the hyperactivation of hamster spermatozoa.  相似文献   

16.
Proteins present in the seminal plasma of mammals are known to influence functions associated with ejaculated spermatozoa such as motility, capacitation, acrosome reaction and fertilising ability. The proteins isolated and characterised so far influence only one of the above functions of spermatozoa. Seminalplasmin, a protein isolated from the seminal plasma of bull is exceptional in that it influences many of the above spermatozoal functions. It is also a potent antimicrobial protein and capable of lysing microbial and mammalian cells. The physiological function of seminalplasmin as nature's own antifertility agent is discussed.  相似文献   

17.
The effect of in vitro capacitation (events that occur before the acrosome reaction) on the acrosomal enzymes of human spermatozoa was determined. Capacitation of human spermatozoa was assessed by their ability to penetrate denuded hamster oocytes. The activities of a number of enzymes commonly associated with the sperm acrosome, including nonzymogen acrosin, proacrosin, inhibitor-bound acrosin, hyaluronidase, acid phosphatase, beta-glucuronidase, beta-glucosidase, beta-N-acetylglucosaminidase, beta-galactosidase and beta-N-acetylgalactosaminidase were assessed. With the exception of acid phosphatase, no alteration in enzyme activity occurred after 4 h of incubating the spermatozoa under capacitation conditions although gamete fusion took place. The acid phosphatase levels decreased twofold, presumably due to the loss of seminal (prostatic acid phosphatase that loosely adheres to spermatozoa. After 8 h of capacitation, a large decrease in sperm enzyme levels took place only in the case of hyaluronidase, although small decreases were also noted in total acrosin, proacrosin and inhibited acrosin. No new electrophoretically migrating forms of acrosin were observed. Decreases in total acrosin and proacrosin, but not in inhibited acrosin, also occurred when spermatozoa were incubated under noncapacitating conditions for 8 h, indicating that capacitation may specifically cause the release of some acrosin inhibitor from human spermatozoa. It is concluded that, with the possible exception of hyaluronidase, the in vitro capacitation of human spermatozoa does not cause a major change in its acrosomal enzyme content so that these hydrolases are fully present before the acrosome reaction takes place during gamete fusion. Serum albumin appears to protect against the loss of some of these enzymes since the activity of several glycosidases was significantly reduced when the spermatozoa were incubated for 8 h in human serum albumin-free medium.  相似文献   

18.
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.  相似文献   

19.
The membrane mobility agent A2C accelerates the onset of the acrosome reaction of guinea pig spermatozoa by promoting capacitation. Spermatozoa incubated in a suspension of A2C particles in Ca2+-free medium for one hour undergo a synchronous, rapid acrosome reaction upon the addition of Ca2+. These acrosome-reacted spermatozoa are capable of fertilization as assessed by their ability to penetrate (fuse with) zona-free hamster eggs. The disulfide-reducing agent, dithiothreitol (DTT) inhibits A2C-mediated capacitation. It also blocks fertilization of zone-free eggs by acrosome-reacted spermatozoa by preventing attachment of the spermatozoa to the egg plasma membrane. The mode of A2C action on spermatozoa is compared to that of A2C-induced fusion in somatic cells. The similarity of the molecular events in the sperm membrane during capacitation and the acrosome reaction to these in other fusion events is pointed out. Inhibition of capacitation by DTT points to the importance of membrane and/or submembrane proteins and thiol groups in this process. Oxidation of sperm membrane SH groups may play an important role in in vivo capacitation.  相似文献   

20.
The effect of taurine at various concentrations (0.01, 0.1 and 1 mM) on the in vitro motility and fertilizing capacity of human spermatozoa was studied. Spermatozoa collected from 10 normal men were washed in BWW medium and incubated with taurine for 5 hours, the period required for spermatozoal capacitation. The percent motilities were recorded at 0 and 5 hours during capacitation preincubation with taurine. After incubation, the spermatozoa were washed with BWW medium to remove taurine before insemination of the zona-free hamster ova for an assessment of the fertilizing capacity. Taurine caused a significant dose-dependent increase in the penetration of the zona-free hamster ova in comparison to the control (p less than 0.05). Taurine did not have any significant effects on the spermatozoal motility during capacitation preincubation. The results suggest that there may be a physiological role for this beta-amino acid in human spermatozoal capacitation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号