首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary Amine-containing small intensely fluorescent (SIF) cells are ubiquitous in vertebrate sympathetic ganglia and, in some species, SIF cells have been identified as interneurons. The hypothesis proposed in this study is that SIF cells in superior sympathetic ganglia of the guinea pig function as interneurons, with efferent connections characteristic for the species. Fluorescence (catecholamine) microscopy and 5-hydroxydopamine marker for electron microscopy were used to study SIF cells, their processes and connections in this ganglion.Brightly fluorescent fibers were seen attached to virtually all SIF cells, and were of two types. The first type, single or arranged in cords, interconnected elements of the SIF-cell system; these apparent linkages joined individual SIF cells as well as adjacent clusters. The electron-microscopic evidence for synaptic contacts between SIF cells warrants the claim that integrated action is a presumed function of these elements. The second type of SIF-cell process was generally of greater length. These individual, branching fibers made presumed connections with dendrites of most principal ganglionic neurons. This arrangement suggested by histofluorescence preparations was confirmed by electron microscopy to involve synaptic connections, and the postsynaptic element was shown to be continuous with the perikaryon of the principal ganglionic neuron. Ultrastructural evidence that collections of dense-cored vesicles occur within processes of both principal ganglionic neurons and SIF cells, in proximity to unsheathed portions of plasma membrane, leads to the conclusion that interstitial diffusion of catecholamine from both may occur; the finding of SIF cell processes adjacent to fenestrated blood vessels suggests that catecholamine may also be transported through capillaries.  相似文献   

2.
W Q Cai  G Gabella 《Acta anatomica》1984,119(1):10-17
A population of catecholamine-containing cells, broadly belonging to the class of small intensely fluorescent (SIF) cells, was observed in the ganglionated plexus and around blood vessels of the guinea pig gallbladder. Their morphological features were studied by fluorescence and electron microscopy. Some cells were closely associated with ganglion neurons within the ganglionated plexus. Others were clustered into small groups located along blood vessels. Counts carried out on the whole gallbladder showed that these cells varied greatly in number between individuals and that they were most numerous shortly after birth (on average 230 cells). In the adult, their average number was about 30.  相似文献   

3.
Summary The human fetal sympathetic ganglia were studied using the indirect peroxidase-antiperoxidase PAP method for immunocytochemical demonstration of three catecholamine-synthesizing enzymes, tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH) and phenylethanolamine-N-methyltransferase (PNMT) as well as the neuropeptides leucine (Leu5)-enkephalin and substance P. The neuroblasts of the ganglia showed intense peroxidase immunoreactivity for TH, moderate reaction to DBH, and no reaction to PNMT. The small intensely fluorescent (SIF) cells situated along the blood vessels also showed positive labelling for only two enzymes, TH and DBH. The immunocytochemical localization of these enzymes suggests that both neuroblasts and SIF cells synthesize noradrenalin. Neither the neuroblasts nor SIF cells showed a reaction to substance P, and only the SIF cells contained enkephalin-like immunoreactivity. The role of enkephalin in the noradrenalin-containing SIF cells is unknown, but may be related to neuromodulation of ganglionic transmission.  相似文献   

4.
The spectral curves of emission of paraform-induced fluorophores in small, intensely fluorescent (SIF) cells in lumbar ganglia of the sympathetic trunk and in the major pelvic ganglion were compared with the fluorescence spectra of lipofuscin granules in the perikaryons of the neurons of the vagus inferior ganglion. As a rule, the fluorescence spectra of SIF cells correlate with the content in them of catecholamines. The spectral characteristics of fluorophores of so-called "yellow" SIF cells have much in common with the fluorescence spectra of lipofuscin granules. Apparently, in some of cases small cells containing lipofuscin may be identified as "yellow" SIF cells.  相似文献   

5.
The number and fluorescence intensity of small intensely fluorescent (SIF) cells in the nerve ganglia of the rat atria were determined after the treatment, using modified Falk's method. The animals were 1, 7, 14, 28 days and 30 months of age. Similar changes were found in the amount of SIF cells and fluorophore content in all the atrial regions. A marked increase in the number of SIF cells and maximum values were determined between the second and fourth week after birth. The first two weeks of age corresponded to the decrease and the forth week to the increase in SIF cells fluorescent intensity. The data of the investigation made it possible to suggest the connection between principal stages of SIF cell pool formation and processes of autonomic ganglia innervation development.  相似文献   

6.
Summary The localization in the superior cervical ganglia (SCG) of small, intensely fluorescent (SIF) cells and of principal nerve (PN) cells innervating the pineal gland was examined in adult male Sprague-Dawley rats. PN cells were demonstrated by means of the retrograde neuron-tracing method using the fluorescent tracer Fluoro-Gold (FG) injected into the pineal gland. SIF cells were visualized by the formaldehyde-induced fluorescence method. Twentynine percent of the FG-labeled PN cells were found closely associated with SIF cells. In the rostral half of the ganglion, 43% of the SIF cells were situated in juxtaposition to one or several labeled neurons. The possible influence of SIF cells on the regulation of pineal metabolism is discussed with respect to their role as both local endocrine cells and interneurons.  相似文献   

7.
Summary The number and distribution of small intensely fluorescent (SIF) cells in the atrial region were determined, using fluorescence histochemical and histological techniques, in two species of theRodentia order. In rats, SIF cells bore a fairly consistent anatomical relationship to the intracardiac ganglia and the variation in their distribution in individual animals appeared to reflect in part variations in extent and conformation of the intracardiac ganglia. In ground squirrels of similar age, fewer SIF cells were associated with intracardiac ganglia but they were in grape-like clusters between the aorta and the pulmonary artery. The clusters, varying from sparse to extensive, were present in all six ground squirrels examined. These observations indicate considerable intraorder differences in both qualitative and quantitative distribution of SIF cells in the atrial region, and prompt speculation that morphological differences reflect different functional roles.  相似文献   

8.
Summary Chick embryo lumbar sympathetic ganglia (11 day) cultured for three days and uncultured (in vivo) ganglia of comparable age were freeze-dried and processed by the formaldehyde-induced fluorescence technique for the demonstration of biogenic monoamines. The catecholamine levels within principal neurone cell bodies and small intensely fluorescent (SIF) cells were then examined in plastic sections of the in vivo and in vitro ganglia by a quantitative fluorescence method under various experimental conditions. Culture of ganglia for three days in the presence of hydrocortisone acetate (10g/ml) resulted in an increased SIF cell fluorescence (P<0.001 compared to control) and a green to yellow colour shift in the fluorophore of SIF cells. No detectable alteration in the fluorescence level of neurones was observed. When neurones after three days in culture were incubated for 1 h in exogenous catecholamines, a significant increase in fluorescence levels (interpreted as an increase in catecholamine content) occurred with noradrenaline (2×10–6 M; 2×10–5 M). SIF cells in ganglia removed directly from 14-day old chicks similarly took up noradrenaline and dopamine, and also adrenaline (2×10–5 M). Morphological results are presented which indicate that the cellular appearances and architecture of cultured ganglion explants are very similar to those in comparable ganglia in vivo.This work was supported by a grant from the Medical Research Council. We thank Mrs. G. O'Shea, Mr. T.T. Lee and Mr. P.F. Hire for their valuable technical assistance  相似文献   

9.
Summary The accessory cells of rat, guinea-pig and chick sympathetic ganglia have been studied in tissue culture with phase-contrast microscopy, time-lapse cinematography and fluorescence histochemistry. Small intensely fluorescent (SIF) cells have been described for the first time in culture. Satellite cells, which are closely associated with nerve cell bodies, and interstitial cells, which are dispersed throughout the ganglion, appeared to be identical cell types; they do not correspond to oligodendrocytes of the central nervous system as has been suggested previously. However, a small number of cells closely resembling central oligodendrocytes were present. Astrocyte-like cells have also been seen occasionally, although their identity is not clear. Several other cell types were present and have been identified as Schwann cells, sheath cells, fibroblasts, perineural epithelium, macrophages and endothelial cells.This work was supported by the National Heart Foundation of Australia and the Australian Research Grants Committee. We are particularly grateful to Janet McConnell for her excellent technical assistance.  相似文献   

10.
Summary To further evaluate the role of autonomic ganglia in the regulation of pelvic visceral activity, the neural elements in the major pelvic ganglion of the male rat have been studied with histochemical and electron microscopic techniques. The principal findings are that the ganglion is composed of cholinergic and adrenergic ganglion cells as well as small intensely fluorescent (SIF) cells. Polarity in the ganglion is indicated by clustering of small ganglion cells which stain intensely for acetylcholinesterase (AChE) along the pelvic nerve while larger cells, with weak to moderate AChE activity, collect near small branches of the hypogastric nerve. Some cholinergic ganglion cells are enclosed by a plexus of adrenergic terminals. SIF cells appear to be in contact with both cholinergic and adrenergic cells, although many of the fluorescent beads around adrenergic neurons may be short dendrites of ganglion cells, rather than processes of SIF cells. Two types of SIF cells may be distinguished on the basis of size and morphology of their granulated vesicles. Afferent synapses of the cholinergic type were common on SIF cells of the large granule and small granule type. Portions of SIF cells with large granules occur within the capsule of ganglion cells. Contacts seen here were interpreted as efferent synapses from SIF cells to the dendrites of ganglion cells.  相似文献   

11.
Synopsis It is known that hydrocortisone causes a great increase in the number of small intensely fluorescent (SIF) cells in the sympathetic ganglia when injected into newborn rats. The effect of hydrocortisone on nervous tissuein vitro has not been studied previously.Pieces of newborn rat sympathetic ganglia were cultivated in Rose chambers. Hydrocortisone was dissolved in the medium in concentrations of 1–9 mg/l. Both control and hydrocortisone-containing cultures were examined daily by phase-contrast microscopy, and the catecholamines were demonstrated histochemically by formaldehyde-induced fluorescence after 7 days in culture.All cultures showed outgrowths of axons and supporting cells elements, although these were less extensive in the groups of cultures with hydrocortisone. After a week, SIF cells with a green fluorescence were observed in the control explants. In all cultures with hydrocortisone, a concentration-dependent increase was observed in the fluorescence intensity and the number of the SIF cells in the explant; numerous SIF cells were also seen in the outgrowth. Some SIF cells showed processes and the longest processes were seen in cultures with the highest concentration of hydrocortisone.It is concluded that hydrocortisone causes an increased synthesis of catecholamines in the SIF cellsin vitro, and an increase in their number by affecting either their division or their differentiation from a more immature form, or both. This effect was a direct one and not mediated by any system other than the ganglion itself. Induction of enzyme synthesis by hydrocortisone is proposed as an explanation of the increase in catecholamine concentration.University of Melbourne Senior Research Fellow, September 1971-August 1972Sunshine Foundation and Rowden White Trust Overseas Research Fellow in the University on Melbourne, September 1971-August 1972  相似文献   

12.
The number and intensity of fluorescence of small, intensely fluorescent cells were measured on serial slices of main pelvic (MPG) ganglion and lumbar ganglia of sympathetic trunk (LG), treated by modified Falck method, on days 1, 7, 14, 28, and 26-30 months of age. The content of paraform-induced fluorescence increased with age of two weeks and later in SIF cells of MPG and LG. The number of SIF cells in LG decreased with age, while that of MPG increased. The growth of a number of SIF cells in MPG was detected in large clusters.  相似文献   

13.
Summary Small intensely fluorescent (SIF) cells appeared singly or, more frequently, in variably-sized clusters in the sacroccygeal 8th and 9th sympathetic ganglia of the bullfrog. Smaller clusters containing only two to nine SIF cells accounted for 61% of 1773 clusters examined. The largest cluster contained 283 cells. The number of cells in individual ganglia also varied from 21 to 3332. SIF cells, solitary as well as in smaller clusters, received no distinct form of the synaptic contact. In contrast, the cells in larger clusters were frequently innervated by nerve endings that were similar in vesicular constitution to the nerve endings on principal ganglion (PG) cells. No synaptic contact was found between SIF cells and PG cells. SIF cells were also characterized by their location in the vicinity of blood capillaries with a continuous endothelium. p]Our observation seems to suggest that larger clusters of SIF cells receiving nerve endings are linked to a paracrine and/or endocrine system. Chemical influence via the blood stream and intraganglionic milieu for non-innervated SIF cells in the solitary or smaller clusters is a subject for speculation. An interneuronal role of SIF cells to relay stimuli to PG cells seems unlikely. The possible functions here assigned to SIF cells could be variable in efficiency depending on their population and density.  相似文献   

14.
Summary Fluorescence and electron microscopy have been used to study the distribution of noradrenergic nerves in the smooth muscle of the cat urinary bladder. Using the former technique, relatively few fluorescent noradrenergic nerves were observed in the body and fundus, while a rich plexus occurred adjacent to muscle cells of the bladder neck. The trigone could not be distinguished neuromorphologically from detrusor muscle in this region. Electron microscopy showed that the majority of noradrenergic terminals in the body and fundus were associated with presumptive cholinergic axons, while in the bladder neck noradrenergic terminals formed typical neuroeffector relationships with individual smooth muscle cells.Numerous ganglia occurred both in the adventitia and among the smooth muscle bundles, particularly in the bladder neck. The majority of the nerve cell bodies were non-fluorescent, although many contained bright orange autofluorescent granules, believed to be lysosomes. A small minority of ganglion cells were associated with fluorescent noradrenergic nerve terminals, thereby providing structural evidence for limited intraganglionic inhibition. In addition, occasional groups of small intensely fluorescent (SIF) cells were observed in some intramural ganglia and these were subsequently identified in the electron microscope. The possibility that these cells may provide a second inhibitory influence on bladder activity was considered.  相似文献   

15.
 Small intensely fluorescent (SIF) cells are paraganglionic cells derived from sympathicoblasts which may serve as interneurons, endo-/paracrine cells or arterial chemoreceptors within sympathetic ganglia. Like paraganglionic cells of other locations, e.g., carotid body glomus cells, they are responsive to hypoxia. Recent studies on glomus cells and other hypoxia-sensing cells suggested the involvement of a b 558 -type cytochrome and intracellular generation of H2O2 in the process of oxygen sensing. In the present study, we demonstrate the occurrence of the small subunit of cytochrome b 558 , p22phox, in SIF cells of guinea-pig sympathetic ganglia by immunohistochemistry using two different antisera. H2O2 production was monitored in explanted intact superior cervical ganglia of 2-day-old rats by confocal laser scanning analysis of rhodamine 123 fluorescence generated due to oxidation of dihydrorhodamine 123 by H2O2. Using this technique, SIF cell clusters appeared as sites of highest H2O2 production within the ganglia. Thus, SIF cells exhibit two key features of an oxidase system generating reactive oxygen species. This may be involved in the proposed chain of events in oxygen sensing, but alternative cellular functions of this system have also to be considered. Accepted: 19 September 1996  相似文献   

16.
The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.  相似文献   

17.
An immunohistochemical and immunoelectron microscopic study was used to demonstrate tyrosine hydroxylase (TH) and dopamine -hydroxylase (DBH) immunoreactivities in the rat pancreas. Small TH immunoreactive cells were found in close contact with large TH immunonegative ganglion cells among the exocrine glands and were occasionally found in some islets. Some of these TH immunoreactive cells were also DBH immunopositive. The immunoreaction product was seen diffusely in the cytoplasm and in the granule cores of TH immunoreactive cells. All intra-pancreatic ganglion cells were immunoreactive for DBH, but not for TH. The TH immunoreactive cells were identified as small intensely fluorescent (SIF) cells due to their localization and morphological characteristics and showed no insulin, glucagon, somatostatin or pancreatic polypeptide immunoreactivities. These results indicate that SIF cells may release dopamine or noradrenaline to adequate stimuli while the intra-pancreatic ganglion cells with only DBH may not synthesize catecholamines in a normal biosynthetic pathway. TH immunoreactive nerve bundles without varicosities and fibers with varicosities, associated or unassociated with blood vessels, were found in both the exocrine and endocrine pancreas. Close apposition of TH immunoreactive nerve fibers to the smooth muscle and endothelial cells of the blood vessels was observed. A close apposition between TH immunoreactive nerve fibers and exocrine acinar cells and islet endocrine cells was sometimes found in the pancreas. The immunoreaction product was seen diffusely in the axoplasm and in the granular vesicles of the immunoreactive nerve fibers. Since no TH immunoreactive ganglion cells were present in the rat pancreas, the present study suggests that noradrenergic nerve fibers in the pancreas may be extrinsic in origin, and may exert an effect on the regulation of blood flow and on the secretory acitivity of the acinar cells, duct cells and endocrine cells.  相似文献   

18.
Abstract— Treatment of neonatal rats with dexamethasone resulted in the appearance of phenylethanolamine- N -methyltransferase (PNMT) and numerous small, intensely fluorescent (SIF) cells in abdominal paraganglia and in sympathetic paravertebral ganglia. These cells may be derived from a primitive stem cell precursor, but because of their unusual anatomical features, origin from ganglion cells cannot be altogether ruled out. Associated with the proliferation of the cells was a marked increase in the PNMT activity of the tissues. The PNMT response to the glucocorticoid was limited to the first few days of life, as was the SIF cell response. After discontinuance of dexamethasone, the enzyme activity fell very rapidly, while the number of cells declined at a slower rate.  相似文献   

19.
Catecholamine synthetic enzymes are found in many cranial parasympathetic principal neurons, and in the small intensely fluorescent (SIF) cells that populate parasympathetic as well as sympathetic ganglia. While there is evidence that the acquisition of noradrenergic properties in sympathetic neuron precursors depends on factors that these cells encounter in the trunk environment, the mechanisms that direct the development of noradrenergic traits in cranial parasympathetic neurons and SIF cells are not understood. The present study examines the time course of appearance of tyrosine hydroxylase (TH) immunoreactivity in the principal neurons and SIF cells of the rat sphenopalatine ganglion. We show that the sphenopalatine ganglion of normal adult rats contains both a small population of TH-immunoreactive principal neurons and many SIF cells. The TH-immunoreactive principal neurons do not synthesize or store detectable catecholamines, even though the majority of sphenopalatine ganglion neurons do contain 1-amino acid decarboxylase catalytic activity. Sphenopalatine ganglion principal neurons do not accumulate detectable levels of exogenous catecholamines. This observation suggests that they lack a high affinity norepinephrine uptake system. In contrast to what has been observed previously for sympathetic neurons, the appearance of TH immunoreactivity in sphenopalatine neurons is not temporally correlated with the cessation of neural crest cell migration. The first TH-immunoreactive neurons do not appear in the sphenopalatine ganglion until Embryonic Day 16.5, 2 days after the ganglion has condensed and process outgrowth has begun. The number of sphenopalatine neurons that express TH immunoreactivity increases dramatically between Embryonic Day 18.5 and Postnatal Day 1, but then decreases. In fact, the percentage of sphenopalatine neurons that express TH immunoreactivity is almost fivefold higher in newborn than in adult rats. SIF cells cannot be definitively identified in the sphenopalatine ganglion until after Embryonic Day 18.5. The time course of appearance of TH immunoreactivity in sphenopalatine ganglion cells raises the possibility that TH expression is stimulated in these cells by factors encountered either at their condensation site or at their target, such as glucocorticoids or nerve growth factor. The relatively late appearance of SIF cells in the sphenopalatine ganglion argues against the hypothesis that SIF cells are the precursors of all autonomic neurons.  相似文献   

20.
To determine whether similar mechanisms regulate adrenergic phenotypic expression in different cellular populations, the superior cervical sympathetic ganglion (SCG) and extra-adrenal chromaffin tissue were studied in the fetal and neonatal rat; results were compared to those previously obtained with the adrenal medulla. Phenylethanolamine N-methyltransferase (PNMT), the enzyme which converts norepinephrine to epinephrine, was used as an index of adrenergic expression. PNMT catalytic activity was initially detectable in the SCG of normal, untreated fetuses at 17.0 days of gestation (E17.0), and increased three- to fourfold until postnatal day 2. Thereafter activity decreased precipitously, and was undetectable 2 weeks after birth. Immunohistochemical studies, using specific antisera to PNMT, were employed to localize the enzyme. Immunoreactivity (PNMT-IR) was undetectable in sympathetic ganglia of control animals, suggesting that this method is less sensitive than the catalytic assay. Following glucocorticoid treatment, cells heavily stained for PNMT-IR were observed in paravertebral sympathetic ganglia, including the SCG, and in the organ of Zuckerkandl. In the SCG, PNMT-IR was present in small cells presumed to be small, intensely fluorescent (SIF) cells and was never observed in principal ganglion neurons. The increase in PNMT-IR after steroid treatment was strikingly age dependent: initiation of treatment at progressively older ages during the first week of life resulted in fewer and fewer PNMT-IR cells. No response was apparent after 1 week. Moreover, treatment of pregnant rats was associated with appearance of PNMT-IR at E18.5, but not at E16.5. After treatment from days 0 to 6 of life, PNMT-IR gradually disappeared. However, retreatment on days 24–30 caused the reappearance of PNMT-IR, suggesting that exposure to steroids at birth causes (a) an immediate increase in PNMT-IR and (b) responsiveness to steroids during adulthood. Consequently, the disappearance of PNMT-IR after exposure to steroids at birth, is not simply due to death of SIF cells. We conclude that proximity to the adrenal cortex is not necessary for initial expression of PNMT. More generally, the expression of PNMT by ganglion SIF cells parallels that in adrenal chromaffin cells since initial expression was not dependent on high local concentrations of glucocorticoids, whereas subsequent development did require high levels of the hormones. Our observations suggest that similar mechanisms regulate expression and development of the adrenergic phenotype in adrenal and sympathetic ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号