首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with the stability analysis for neural networks with interval time-varying delays and parameter uncertainties. An approach combining the Lyapunov-Krasovskii functional with the differential inequality and linear matrix inequality techniques is taken to investigate this problem. By constructing a new Lyapunov-Krasovskii functional and introducing some free weighting matrices, some less conservative delay-derivative-dependent and delay-derivative-independent stability criteria are established in term of linear matrix inequality. And the new criteria are applicable to both fast and slow time-varying delays. Three numerical examples show that the proposed criterion are effective and is an improvement over some existing results in the literature.  相似文献   

2.
In this paper, input-to-state stability problems for a class of recurrent neural networks model with multiple time-varying delays are concerned with. By utilizing the Lyapunov–Krasovskii functional method and linear matrix inequalities techniques, some sufficient conditions ensuring the exponential input-to-state stability of delayed network systems are firstly obtained. Two numerical examples and its simulations are given to illustrate the efficiency of the derived results.  相似文献   

3.
In this paper, we investigate the problem of global and robust stability of a class of interval Hopfield neural networks that have time-varying delays. Some criteria for the global and robust stability of such networks are derived, by means of constructing suitable Lyapunov functionals for the networks. As a by-product, for the conventional Hopfield neural networks with time-varying delays, we also obtain some new criteria for their global and asymptotic stability.  相似文献   

4.
The robust asymptotic stability analysis for uncertain BAM neural networks with both interval time-varying delays and stochastic disturbances is considered. By using the stochastic analysis approach, employing some free-weighting matrices and introducing an appropriate type of Lyapunov functional which takes into account the ranges for delays, some new stability criteria are established to guarantee the delayed BAM neural networks to be robustly asymptotically stable in the mean square. Unlike the most existing mean square stability conditions for BAM neural networks, the supplementary requirements that the time derivatives of time-varying delays must be smaller than 1 are released and the lower bounds of time varying delays are not restricted to be 0. Furthermore, in the proposed scheme, the stability conditions are delay-range-dependent and rate-dependent/independent. As a result, the new criteria are applicable to both fast and slow time-varying delays. Three numerical examples are given to illustrate the effectiveness of the proposed criteria.  相似文献   

5.
The problem of the global asymptotic stability for a class of neural networks with time-varying delays is investigated in this paper, where the activation functions are assumed to be neither monotonic, nor differentiable, nor bounded. By constructing suitable Lyapunov functionals and combining with linear matrix inequality (LMI) technique, new global asymptotic stability criteria about different types of time-varying delays are obtained. It is shown that the criteria can provide less conservative result than some existing ones. Numerical examples are given to demonstrate the applicability of the proposed approach.  相似文献   

6.
This paper considers the robust stability of a class of neural networks with Markovian jumping parameters and time-varying delay. By employing a new Lyapunov-Krasovskii functional, a sufficient condition for the global exponential stability of the delayed Markovian jumping neural networks is established. The proposed condition is also extended to the uncertain cases, which are shown to be the improvement and extension of the existing ones. Finally, the validity of the results are illustrated by an example.  相似文献   

7.
In this paper, we extensively study the global asymptotic stability problem of complex-valued neural networks with leakage delay and additive time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional and applying newly developed complex valued integral inequalities, sufficient conditions for the global asymptotic stability of proposed neural networks are established in the form of complex-valued linear matrix inequalities. This linear matrix inequalities are efficiently solved by using standard available numerical packages. Finally, three numerical examples are given to demonstrate the effectiveness of the theoretical results.  相似文献   

8.
Global exponential stability is considered for a class of discrete-time cellular neural networks with variable delays. By employing a discrete Halanay inequality, a new result is presented ensuring global exponential stability of the unique equilibrium point of the networks. The result extends and improves the earlier publications due to the fact that it removes some restrictions on the delay. An example is given to illustrate the effectiveness of the global exponential stability condition provided here.  相似文献   

9.
The state estimation problem for discrete-time recurrent neural networks with both interval discrete and infinite-distributed time-varying delays is studied in this paper, where interval discrete time-varying delay is in a given range. The activation functions are assumed to be globally Lipschitz continuous. A delay-dependent condition for the existence of state estimators is proposed based on new bounding techniques. Via solutions to certain linear matrix inequalities, general full-order state estimators are designed that ensure globally asymptotic stability. The significant feature is that no inequality is needed for seeking upper bounds for the inner product between two vectors, which can reduce the conservatism of the criterion by employing the new bounding techniques. Two illustrative examples are given to demonstrate the effectiveness and applicability of the proposed approach.  相似文献   

10.
This paper presents new theoretical results on global exponential stability of bi-directional associative memory neural networks with distributed delays and reaction-diffusion terms based on the inequality technique, Lyapunov functional, and analysis technique. The results remove the usual assumption that the activation functions are of monotonous or differential character. Exponential converging velocity index is estimated, which depends on the delay kernel functions and system parameters. Finally, two numerical examples are given to show the validity and feasibility of our results.  相似文献   

11.
In this paper, the globally exponential synchronization of delayed fuzzy cellular neural networks with nonlinear impulsive effects are concerned. By utilizing inequality techniques and Lyapunov functional method, some sufficient conditions on the exponential synchronization are obtained based on p-norm. Finally, a simulation example is given to illustrate the effectiveness of the theoretical results.  相似文献   

12.
This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov–Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results.  相似文献   

13.
This paper investigates the finite-time synchronization and fixed-time synchronization problems of inertial memristive neural networks with time-varying delays. By utilizing the Filippov discontinuous theory and Lyapunov stability theory, several sufficient conditions are derived to ensure finite-time synchronization of inertial memristive neural networks. Then, for the purpose of making the setting time independent of initial condition, we consider the fixed-time synchronization. A novel criterion guaranteeing the fixed-time synchronization of inertial memristive neural networks is derived. Finally, three examples are provided to demonstrate the effectiveness of our main results.  相似文献   

14.
This paper presents new theoretical results on global exponential stability of cellular neural networks with time-varying delays. The stability conditions depend on external inputs, connection weights and delays of cellular neural networks. Using these results, global exponential stability of cellular neural networks can be derived, and the estimate for location of equilibrium point can also be obtained. Finally, the simulating results demonstrate the validity and feasibility of our proposed approach.  相似文献   

15.
In this article, we consider a class of neutral impulsive shunting inhibitory cellular neural networks with time varying coefficients and leakage delays. We study the existence and the exponential stability of the piecewise differentiable pseudo almost-periodic solutions and establish sufficient conditions for the existence and exponential stability of such solutions. An example is provided to illustrate the theory developed in this work.  相似文献   

16.
This paper investigates the problem of stability analysis for recurrent neural networks with time-varying delays and polytopic uncertainties. Parameter-dependent Lypaunov functionals are employed to obtain sufficient conditions that guarantee the robust global exponential stability of the equilibrium point of the considered neural network. The derived stability criteria are expressed in terms of a set of relaxed linear matrix inequalities, which can be easily tested by using commercially available software. Two numerical examples are provided to demonstrate the effectiveness of the proposed results.  相似文献   

17.
MacNeil D  Eliasmith C 《PloS one》2011,6(9):e22885
A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems.  相似文献   

18.
Global robust stability for shunting inhibitory CNNs with delays   总被引:1,自引:0,他引:1  
In this paper, the problem of global robust stability for shunting inhibitory cellular neural networks (SICNNs) is studied. A sufficient condition guaranteeing the network's global robust stability is established. The result can easily be used to verify globally robust stable networks. An example is given to illustrate that the conditions of our results are feasible.  相似文献   

19.
This paper aims to analyze global robust exponential stability in the mean square sense of stochastic discrete-time genetic regulatory networks with stochastic delays and parameter uncertainties. Comparing to the previous research works, time-varying delays are assumed to be stochastic whose variation ranges and probability distributions of the time-varying delays are explored. Based on the stochastic analysis approach and some analysis techniques, several sufficient criteria for the global robust exponential stability in the mean square sense of the networks are derived. Moreover, two numerical examples are presented to show the effectiveness of the obtained results.  相似文献   

20.
This paper investigates drive-response synchronization for a class of neural networks with time-varying discrete and distributed delays (mixed delays) as well as discontinuous activations. Strict mathematical proof shows the global existence of Filippov solutions to neural networks with discontinuous activation functions and the mixed delays. State feedback controller and impulsive controller are designed respectively to guarantee global exponential synchronization of the neural networks. By using Lyapunov function and new analysis techniques, several new synchronization criteria are obtained. Moreover, lower bound on the convergence rate is explicitly estimated when state feedback controller is utilized. Results of this paper are new and some existing ones are extended and improved. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号