首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Treatment of L1210 cells with increasing concentrations of MNNG produces heterogeneous perturbations of cellular deoxynucleoside triphosphate pools, with the magnitude and direction of the shift depending on the deoxynucleotide and on the concentration and time of exposure of the DNA damaging agent. 5 microM MNNG stimulated an increase in dATP, dCTP and dTTP but dGTP pools remained constant. These increases were not affected by 3-aminobenzamide, indicating that the pool size increases were produced by poly(ADP-ribose) polymerase independent reactions. 30 microM MNNG caused a time dependent decrease in dATP, dGTP, dTTP and dCTP. The dGTP pool was most drastically affected, becoming totally depleted within 3 hours. The fall in all 4 dNTP pools was substantially prevented by 3-aminobenzamide, suggesting that the decrease in dNTPs following DNA damage is mediated by a poly(ADP-ribose) polymerase dependent reaction. Severe depression of dGTP pools consequent to NAD and ATP depletion may provide a metabolic pathway for rapidly stopping DNA synthesis as a consequence of DNA damage and the activation of poly(ADP-ribose) polymerase.  相似文献   

3.
A balanced supply of deoxyribonucleoside triphosphates (dNTPs) is one of the key prerequisites for faithful genome duplication. Both the overall concentration and the balance among the individual dNTPs (dATP, dTTP, dGTP, and dCTP) are tightly regulated, primarily by the enzyme ribonucleotide reductase (RNR). We asked whether dNTP pool imbalances interfere with cell cycle progression and are detected by the S-phase checkpoint, a genome surveillance mechanism activated in response to DNA damage or replication blocks. By introducing single amino acid substitutions in loop 2 of the allosteric specificity site of Saccharomyces cerevisiae RNR, we obtained a collection of strains with various dNTP pool imbalances. Even mild dNTP pool imbalances were mutagenic, but the mutagenic potential of different dNTP pool imbalances did not directly correlate with their severity. The S-phase checkpoint was activated by the depletion of one or several dNTPs. In contrast, when none of the dNTPs was limiting for DNA replication, even extreme and mutagenic dNTP pool imbalances did not activate the S-phase checkpoint and did not interfere with the cell cycle progression.  相似文献   

4.
The HD domain motif is found in a superfamily of proteins in bacteria, archaea and eukaryotes. A few of these proteins are known to have metal-dependant phosphohydrolase activity, but the others are functionally unknown. Here we have characterized an HD domain-containing protein, TT1383, from Thermus thermophilus HB8. This protein has sequence similarity to Escherichia coli dGTP triphosphohydrolase, however, no dGTP hydrolytic activity was detected. The hydrolytic activity of the protein was determined in the presence of more than two kinds of deoxyribonucleoside triphosphates (dNTPs), which were hydrolyzed to their respective deoxyribonucleosides and triphosphates, and was found to be strictly specific for dNTPs in the following order of relative activity: dCTP > dGTP > dTTP > dATP. Interestingly, this dNTP triphosphohydrolase (dNTPase) activity requires the presence of dATP or dTTP in the dNTP mixture. dADP, dTDP, dAMP, and dTMP, which themselves were not hydrolyzed, were nonetheless able to stimulate the hydrolysis of dCTP. These results suggest the existence of binding sites specific for dATP and dTTP as positive modulators, distinct from the dNTPase catalytic site. This is, to our knowledge, the first report of a non-specific dNTPase that is activated by dNTP itself.  相似文献   

5.
6.
Hydroxyurea (HU) causes inhibition of DNA synthesis in regenerating rat liver due to an inhibition of the ribonucleotide reductase. We studied the consequences of a continuous HU infusion for deoxyribonucleoside triphosphate (dNTP) pools in the liver after partial hepatectomy and tried to modify imbalances by application of deoxyribonucleosides in vivo. In normal liver, an intracellular concentration of 0.16, 0.84, 0.33 and 0.27 pmol/micrograms DNA was observed for dATP, dCTP, dGTP and dTTP, respectively. In regenerating liver the dNTP pools show minor changes until 18 h after partial hepatectomy. During and after a continuous HU infusion 14--24 h after partial hepatectomy, the intracellular dNTP pools change considerably. At 19.5 h after partial hepatectomy, 5.5 h after the start of HU infusion, and at 25 h after partial hepatectomy, 1 h after termination of HU infusion, the dTTP pool was more than 10-times, and the dGTP pool about 2-times higher than in controls, while the dATP and dCTP pools remain relatively unchanged. Simultaneous infusion of HU and deoxythymidine (dThd) 14--25 h after partial hepatectomy results in a further increase of the dTTP pool during and after HU infusion. Administration of deoxycytidine (dCyd) leads to a moderate increase of the dCTP pool and a weak decrease of the dTTP pool during HU infusion. The combined application of dCyd and dThd after HU infusion had similar effects on dNTP pools as observed with dThd alone. These results show that intracellular pools of dNTPs in hepatocytes can be altered by exogenous factors in a controlled pattern. This system can be used as a model for studying the implications of induced dNTP pool dysbalances for the initiation of liver carcinogenesis by mutagenic chemicals.  相似文献   

7.
The biochemical mechanism of lymphocyte dysfunction with adenosine deaminase deficiency has been investigated using cultured phytohemagglutinin stimulated normal peripheral blood lymphocytes and the adenosine deaminase (ADA) inhibitor 2'-deoxycoformycin. The addition of deoxyadenosine to ADA-inhibited (but not to uninhibited) cells generated increased dATP pools (up to 50-fold greater than controls) and depressed the mitogen response. dATP Accumulation was accompanied by depletion of the other three deoxynucleoside triphosphate (dNTP) pools (dTTP, dCTP, and dGTP). Suppression of the mitogen response could be prevented ("reversed") to 90% of control levels by the addition of deoxynucleoside precursors for the depleted dNTPs at the initiation of mitogen stimulation. "Reversal" restored the dTTP and possibly the dGTP pools. Thus the mechanism of toxicity in this model appears to be inhibition of ribonucleotide reductase by massive accumulation of dATP, resulting in starvation for the other three deoxyribonucleoside triphosphates. "Reversibility" of this toxicity by providing sources for the missing three deoxynucleoside triphosphates argues for ribonucleotide reductase inhibition rather than other mechanisms of deoxyadenosine toxicity in this model.  相似文献   

8.
9.
Deoxyribonucleoside triphosphate (dNTP) levels were measured in wild type Neurospora and nine mutagen-sensitive mutants, at nine different genes. Eight of these mutants are sensitive to hydroxyurea and histidine and show chromosomal instability, a phenotype which could result from altered levels of dNTPs. Two patterns were seen. Five of the mutants had altered ratios of dNTPs, with relatively high levels of dATP and dGTP and low levels of dCTP, but changes in the dTTP/dCTP ratio did not correlate with changes in spontaneous mutation levels. During exponential growth all but two of the mutants had small but consistent increases in dNTP pools compared to wild type. DNA content per microgram dry hyphae was altered in several mutants but these changes showed no correlation with the dNTP pool alterations.  相似文献   

10.
In this paper, we describe an improved enzymatic assay for the determination of deoxyribonucleoside triphosphates (dNTPs). This is based on the elongation of 32P 5'-end-labeled oligonucleotide primers annealed to complementary oligonucleotide templates. Incorporation within the primer/template (p/t) was catalyzed by the Klenow fragment of Escherichia coli DNA polymerase I under conditions where the concentration of the dNTP to be analyzed is limiting. Using a combination of two different sized p/t pairs, dCTP and dTTP (or dATP and dGTP) were assayed together. Since the elongated products were clearly separated after electrophoresis on a denaturing 10% polyacrylamide gel, the two dNTPs could be quantified in a single lane. This method allows for the first time the simultaneous determination of two pyrimidine or two purine deoxyribonucleoside triphosphates. Consequently, a large number of biological samples can be tested in a single experiment. The high sensitivity of this method enables the quantification of low concentrations of dNTPs, such as those found in resting nondividing cells. Furthermore, this new protocol is well suited for the determination of dNTPs in cells treated with the antiretroviral ddI, since the Klenow fragment has a low affinity for ddATP, the active form of ddI.  相似文献   

11.
Purine and pyrimidine deoxyribonucleoside metabolism was studied in G1 and S phase human thymocytes and compared with that of the more mature T lymphocytes from peripheral blood. Both thymocyte populations have much higher intracellular deoxyribonucleoside triphosphate (dNTP) pools than peripheral blood T lymphocytes. The smallest dNTP pool in S phase thymocytes is dCTP (5.7 pmol/10(6) cells) and the largest is dTTP (48 pmol/10(6) cells), whereas in G1 thymocytes, dATP and dGTP comprise the smallest pools. While both G1 and S phase thymocytes have active deoxyribonucleoside salvage pathways, only S phase thymocytes have significant ribonucleotide reduction activity. We have studied ribonucleotide reduction and deoxyribonucleoside salvage in S phase thymocytes in the presence of extracellular deoxyribonucleosides. Based on these studies, we propose a model for the interaction of deoxyribonucleoside salvage and ribonucleotide reduction in S phase thymocytes. According to this model, extracellular deoxycytidine at micromolar concentrations is efficiently salvaged by deoxycytidine kinase. However, due to feedback inhibition of deoxycytidine kinase by dCTP, the maximal level of dCTP which can be achieved is limited. The salvage of both deoxyadenosine and deoxyguanosine (up to 10(-4) M) is completely inhibited in the presence of micromolar concentrations of deoxycytidine, whereas the salvage of thymidine is unregulated resulting in large increases in dTTP levels. Moreover, significant amounts of the salvaged deoxycytidine is used for dTTP synthesis resulting in further increase of dTTP pools. The accumulated dTTP inhibits the reduction of UDP and CDP while stimulating GDP reduction and subsequently also ADP reduction. The end result of the proposed model is that S phase thymocytes in the presence of a wide range of extracellular deoxyribonucleoside concentrations synthesize their pyrimidine dNTP by the salvage pathway, whereas purine dNTPs are synthesized primarily by ribonucleotide reduction. Using the proposed model, it is possible to predict the relative intracellular dNTP pools found in fresh S phase thymocytes.  相似文献   

12.
Bulky carcinogen-DNA adducts, including (+)-trans-anti-[BP]-N(2)-dG derived from the reaction of (+)-anti-benzo[a]pyrene diol epoxide with guanine, often block the progression of DNA polymerases. However, when rare bypass of the lesions does occur, they may be misreplicated. Experimental results have shown that nucleotides are inserted opposite the (+)-trans-anti-[BP]-N(2)-dG adduct by bacteriophage T7 DNA polymerase with the order of preference A>T>or=G>C. To gain structural insights into the effects of the bulky adduct on nucleotide incorporation within the polymerase active site, molecular modeling and molecular dynamics simulations were carried out using T7 DNA polymerase to permit the relation of function to structure. We modeled the (+)-trans-anti-[BP]-N(2)-dG adduct opposite incoming dGTP, dTTP and dCTP nucleotides, as well as unmodified guanine opposite its normal partner dCTP as a control, to compare with our previous simulation with dATP opposite the adduct. The modeling required that the (+)-trans-anti-[BP]-N(2)-dG adduct adopt the syn conformation in each case to avoid deranging essential protein-DNA interactions. While the dATP: (+)-trans-anti-[BP]-N(2)-dG pair was well accommodated within the active site of T7 DNA polymerase, dCTP fit poorly opposite the adduct, adopting an orientation perpendicular to the plane of the syn modified guanine during the simulation. Rotation about the glycosidic bond of the dCTP residue to this abnormal position was allowed because only one hydrogen bond between dCTP and the (+)-trans-anti-[BP]-N(2)-dG residue evolved during the simulation, and this hydrogen bond was directly across from the dCTP glycosidic bond. The dTTP and dGTP nucleotides, incorporated with an intermediate preference opposite (+)-trans-anti-[BP]-N(2)-dG, were accommodated reasonably well, but not as stably as the dATP nucleotide, due to a skewed primer-template alignment and more exposed BP moiety, respectively. In addition, the extent of stabilizing interactions between the nascent base-pair in each simulation was correlated positively with the incorporation preference of that particular nucleotide. The dATP nucleotide is accommodated most stably opposite the adduct, with protein-DNA hydrogen bonding interactions and an active-site pocket size that do not deviate significantly from those of the control simulation. The simulations of dTTP and dGTP opposite (+)-trans-anti-[BP]-N(2)-dG exhibited more instability in interactions between the protein and the nascent base-pair than the dATP system. However, the active-site pocket size of the dTTP and dGTP simulations remained stable. The dCTP: (+)-trans-anti-[BP]-N(2)-dG system had the least number of stabilizing interactions, and the active-site pocket of this system increased in size significantly compared to the control and other dNTPs opposite the adduct. These simulations elucidated why A is inserted opposite (+)-trans-anti-[BP]-N(2)-dG most frequently, while T and G are inserted opposite the adduct to an extent intermediate between A and C, and C is most rarely incorporated. Structural rationalization of the incorporation preference opposite (+)-trans-anti-[BP]-N(2)-dG by T7 DNA polymerase contributes to providing a molecular explanation for mutations caused by this carcinogen-DNA adduct in a model system.  相似文献   

13.
14.
K Suzuki  M Miyaki  T Ono  H Mori  H Moriya  T Kato 《Mutation research》1983,122(3-4):293-298
The effect of UV irradiation on the intracellular DNA precursor pool in E. coli was investigated. UV irradiation of E. coli, followed by post-incubation for 1-1.5 h, altered the relative sizes of the deoxyribonucleoside triphosphate (dNTP) pool. The total amount of dNTPs increased: both dATP and dTTP increased several-fold, dCTP about twofold, while dGTP remained almost unchanged. In recA- and umuC- strains, which are defective in UV-induced mutagenesis, the pattern of nucleotide pool alterations was similar to that of wild-type strains.  相似文献   

15.
In this communication we describe the rapid increase in cellular deoxynucleoside triphosphate (dNTP) concentrations in Chinese Hamster cell line V79 after exposure to known mutagens. With this cell line an expansion of dATP and dTTP pools was detected; changes in dCTP were not large; changes in dGTP were either not significant or too low to quantitate. This situation may reflect the existence of imbalances in dNTP pools at the DNA replication fork. The expansion of dATP and dTTP pools occurred within 2 to 4 hours after exposure of cultured cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Ultraviolet light (UV), mitomycin C, and cytosine arabinoside also caused similar dNTP pool changes.  相似文献   

16.
17.
几种因素对山茶属植物RAPD分析的DNA扩增的影响   总被引:10,自引:0,他引:10  
唐绍清  施苏华  林海波   《广西植物》1998,18(2):185-188
多种因素会影响RAPD扩增,本研究试验了引物、Mg2+和dNTP的浓度以及Taq酶来源对山茶属植物进行RAPD分析的DNA扩增的影响。结果表明这些因素对扩增结果都会产生影响,通过比较分析,得到了一个对于山茶属植物进行RAPD分析较理想的扩增条件。  相似文献   

18.
DNA polymerases induced by herpes simplex virus (HSV)-1 (KOS) and by three phosphonoformic acid-resistant strains were purified and the interaction of these enzymes with aphidicolin was examined. Incorporation of dATP, dCTP, and dTTP into activated DNA by parental enzyme was inhibited competitively by aphidicolin whereas dGTP incorporation was inhibited noncompetitively. Phosphonoformic acid-resistant enzymes were altered in KM and KI values for substrate and inhibitor, and two were inhibited by aphidicolin via the same modes as parental enzyme. However, aphidicolin competitively inhibited incorporation of dGTP by the third phosphonoformic acid-resistant enzyme under identical assay conditions. Two phosphonoformic acid-resistant enzymes were more sensitive than parental enzyme to inhibition by aphidicolin, indicating a close association between binding determinants for aphidicolin and for phosphonoformic acid on the virus DNA polymerase molecule. Aphidicolin inhibited hydrolysis of polynucleotide by HSV-1 DNA polymerase-associated nuclease. Inhibition was uncompetitive with DNA and the KI value (0.09 microM) was within the range of those calculated during nucleotide incorporation (0.071-0.74 microM). Therefore, aphidicolin may produce antiviral effects both by inhibition of deoxynucleotide incorporation and by deleterious effects resulting from inhibition of polymerase-associated nuclease.  相似文献   

19.
作为DNA合成的重要前体,细胞中4种脱氧核糖核苷三磷酸(dATP、dTTP、dGTP和dCTP)是DNA复制、重组和修复所必需的原材料,而DNA的正确合成及其完整性则是基因组稳定性的重要体现,因此dNTP库状态的稳定对维持基因组的稳定进而保证细胞的稳定至关重要.从dNTP库的质量上讲,一些异质dNTP如氧化的dNTP掺...  相似文献   

20.
While investigating the basis for marked natural asymmetries in deoxyribonucleoside triphosphate (dNTP) pools in mammalian cells, we observed that culturing V79 hamster lung cells in a 2% oxygen atmosphere causes 2-3-fold expansions of the dATP, dGTP, and dTTP pools, whereas dCTP declines by a comparable amount. Others have made similar observations and have proposed that, because O(2) is required for formation of the catalytically essential oxygen-bridged iron center in ribonucleotide reductase, dCTP depletion at low oxygen tension results from direct or indirect effects upon ribonucleotide reductase. We have tested the hypothesis that oxygen limitation affects ribonucleotide specificity using recombinant mouse ribonucleotide reductase and an assay that permits simultaneous monitoring of the reduction of all four nucleotide substrates. Preincubation and assay of the enzyme in an anaerobic chamber caused only partial activity loss. Accordingly, we treated the enzyme with hydroxyurea, followed by removal of the hydroxyurea and exposure to atmospheres of varying oxygen content. The activity was totally depleted by hydroxyurea treatment and nearly fully regained by exposure to air. By the criterion of activities regained at different oxygen tensions, we found CDP reduction not to be specifically sensitive to oxygen depletion; however, GDP reduction was specifically sensitive. The basis for the differential response to reactivation by O(2) is not known, but it evidently does not involve varying rates of reactivation of different allosteric forms of the enzyme or altered response to allosteric effectors at reduced oxygen tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号