首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Recent studies with 8-oxodeoxyguanosine triphosphate (8-oxodGTP) have suggested that incorporation of oxidized nucleotides from the precursor pool into DNA may have deleterious effects. Here we show that 5-hydroxydeoxycytosine triphosphate (5-OHdCTP) and 5-hydroxydeoxyuridine triphosphate (5-OHdUTP) are more efficient substrates than 8-oxodGTP for Escherichia coli DNA polymerase I Klenow fragment lacking proofreading activity, while 8-oxodeoxyadenosine triphosphate (8-oxodGTP, 5-OHdCTP can mispair with dA in DNA but with lower efficiency. Since the 5-hydroxypyrimidines are present in normal and oxidized cellular DNA in amounts similar to the 8-oxopurines, these data suggest that enzymatic mechanisms might exist for removing them from the DNA precursor pools.  相似文献   

2.
We have demonstrated that methanol extracts of human cells are heterogeneous with regard to content of dNDP (deoxynucleoside diphosphate) and dNMP (deoxynucleoside monophosphate) kinases. The presence of these enzymes can affect the reliability of techniques used to measure intracellular pools of deoxynucleotides. An optimized extraction procedure and enzymic assay for dNTP species in haematopoietic cells are described which provide sensitivity to measure 0.1-40pmol of dATP, dTTP and dGTP, and 1.0-40pmol of dCTP. The extraction and assay give linear results with (2.5-15)x10(6) nucleated cells and (0.1-1.5)x10(9) red blood cells. Under these conditions, extracts equivalent to ~0.5x10(6) nucleated haematopoietic cells catalyse the phosphorylation of 0-8% of dNDP and dNMP standards to dNTP and incorporate them into deoxynucleotide polymer under circumstances where 100% of an equimolar dNTP standard would be incorporated. By contrast, extracts of 0.4x10(6) HeLa cells totally converted dADP, dTDP and dGDP into dNTP with subsequent polymerization. Conversion of dCDP was somewhat less efficient. The results demonstrate conclusively that the activities of deoxynucleotide interconverting enzymes differ in different types of human cells. They can interfere with assay of nucleotides, but may not do so in many types of cell extracts. In particular, dNTP concentrations can be measured in human haematopoietic cells after extraction with 60% (v/v) methanol and are not artificially elevated by deoxynucleotide interconversions. It is apparent that extraction and assay procedures for measurement of dNTP species should be analysed for each cell type in order to minimize contaminating enzyme activities and ensure accuracy of dNTP quantification.  相似文献   

3.
Measurements of proton magnetic resonance spectra indicate that, in the presence of magnesium ions, dATP and dTTP associate by stacking at neutral pH. It is speculated that aggregates of stacked triphosphates may play the role of template and primer in the de novo synthesis of poly [d(A-T)] by DNA polymerase I (Kornberg).  相似文献   

4.
5.
The enzyme reaction mechanism and kinetics for biosyntheses of deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) from the corresponding deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP) catalyzed by pyruvate kinase were studied. A kinetic model for this synthetic reaction was developed based on a Bi-Bi random rapid equilibrium mechanism. Kinetic constants involved in this pyruvate kinase catalyzed phosphorylation reactions of deoxynucleoside diphosphates including the maximum reaction velocity, Michaelis-Menten constants, and inhibition constants for dATP and dGTP biosyntheses were experimentally determined. These kinetic constants for dATP and dGTP biosyntheses are of the same order of magnitude but significantly different between the two reactions. Kinetic constants involved in ATP and GTP biosyntheses as reported in literature are about one order of magnitude different from those involved in dATP and dGTP biosyntheses. This enzyme reaction requires Mg2+ ion and the optimal Mg2+ concentration was also determined. The experimental results showed a very good agreement with the simulation results obtained from the kinetic model developed. This kinetic model can be applied to the practical application of a pyruvate kinase reaction system for production of dATP and dGTP. There is a significant advantage of using enzymatic biosyntheses of dATP and dGTP as compared to the chemical method that has been in commercial use.  相似文献   

6.
The enzyme reaction mechanism and kinetics for biosyntheses of deoxycytidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP) from the corresponding deoxycytidine diphosphate (dCDP) and deoxythymidine diphosphate (dTDP) catalyzed by pyruvate kinase were studied. The kinetic model for the two synthetic reactions was found to follow the Bi–Bi random rapid equilibrium mechanism similar to that of the biosynthesis of deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) from the corresponding deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP). Kinetic constants involved in the reactions including the maximum reaction velocity, the Michaelis–Menten constants, and the inhibition constants for dCTP and dTTP biosyntheses were experimentally determined. This enzyme reaction requires Mg2+ ion and the optimal Mg2+ concentration was also determined. The experimental results showed a good agreement with the simulation results obtained from the kinetic model developed. The kinetics of the four biosynthetic reactions for deoxynucleoside triphosphates (dNTP) including dATP, dGTP, dCTP, and dTTP from the corresponding deoxynucleoside diphosphates (dNDP) including dADP, dGDP, dCDP, and dTDP were analyzed. The results suggest that the binding kinetics of phosphoenolpyruvate (PEP) and pyruvate are similar for all four biosynthetic reactions. The affinity of the dNDP substrates to enzyme is of the same order of magnitude as the corresponding dNTP as inhibitors. The order of reactivity and substrate specificity for dNDP is dADP > dGDP > dCDP > dTDP in the pyruvate kinase (PK) reactions. The results obtained from this study can be applied to bioreactor design and production of dCTP and dTTP for biosynthesis of DNA at a significantly lower cost compared to the currently available chemical method.  相似文献   

7.
Cytosolic thymidine kinase (TK1) and deoxycytidine kinase (dCK) and the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) phosphorylate deoxynucleosides and their analogs. Recombinant human TK1 only phosphorylated beta-D Thd, but recombinant TK2, dCK and dGK all phosphorylated equally well beta-D and beta-L as well as to some extent alpha-D and alpha-L deoxynucleosides.  相似文献   

8.
Treatment of unprotected nucleosides with an excess of phosphorous acid and stoichiometric proportions of N,N'-di-p-tolylcarbodiimide in anhydrous pyridine gives predominantly deoxynucleoside monophosphites and minor amounts of 5' :3'-diphosphites; for deoxyadenosine and deoxyguanosine, the monophosphite products are exclusively 5'-phosphites, whereas for deoxycytidine and thymidine, the yields of the 5'-phosphites are 85% and 92% respectively. Sulfurization of these deoxynucleoside monophosphites with sulfur in the presence of trialkylamines and trimethylsilyl chloride in dry pyridine nearly quantitatively produces deoxynucleoside phosphorothioates. Condensation of these phosphorothioates with pyrophosphate forms diastereomers of the alpha-thio-derivatives of deoxynucleoside triphosphate. The individual diastereomers of each deoxynucleoside 5'-O-(1-thio)triphosphate can be separated, on a preparative scale, by ion exchange chromatography.  相似文献   

9.
The four deoxynucleoside triphosphate pools in unfertilized eggs of L. pictus and S. purpuratus were measured and found to be very large, ranging from 10?3 to 10?2 pmoles per egg. The high levels of the individual dNTP pools are sufficient for one to eight rounds of DNA synthesis. During the first division cycle these pools fluctuate with the highest levels being attained prior to DNA synthesis. The pools then decrease just preceding or during the S period. There is a large reduction in the total cellular dNTP in later stages of development when DNA synthesis is reduced relative to the cleavage stages.  相似文献   

10.
Li SX  Vaccaro JA  Sweasy JB 《Biochemistry》1999,38(15):4800-4808
DNA polymerase beta is a small monomeric polymerase that participates in base excision repair and meiosis [Sobol, R., et al. (1996) Nature 379, 183-186; Plug, A., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1327-1331]. A DNA polymerase beta mutator mutant, F272L, was identified by an in vivo genetic screen [Washington, S., et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 1321-1326]. Residue 272 is located within the deoxynucleoside triphosphate (dNTP) binding pocket of DNA polymerase beta according to the known DNA polymerase beta crystal structures [Pelletier, H., et al. (1994) Science 264, 1891-1893; Sawaya, M., et al. (1997) Biochemistry 36, 11205-11215]. The F272L mutant produces errors at a frequency 10-fold higher than that of wild type in vivo and in the in vitro HSV-tk gap-filling assay. F272L shows an increase in the frequency of both base substitution mutations and frameshift mutations. Single-enzyme turnover studies of misincorporation by wild type and F272L DNA polymerase beta demonstrate that there is a 4-fold decrease in fidelity of the mutant as compared to that of the wild type enzyme for a G:A mismatch. The decreased fidelity is due primarily to decreased discrimination between the correct and incorrect dNTP during ground-state binding. These results suggest that the phenylalanine 272 residue is critical for maintaining fidelity during the binding of the dNTP.  相似文献   

11.
12.
13.
The interaction of DNA polymerase from Thermus thermophilus B35 (Tte-pol) with deoxynucleoside triphosphates in the presence of different divalent metal ions has been studied. DNA synthesis and competitive inhibition of the polymerase reaction by non-complementary dNTPs are described with corresponding kinetic schemes. The co-factor properties of some metals (Mg2+, Mn2+, Co2+, Ni2+, Cu2+, Ca2+, Cd2+, and Zn2+) were investigated, and their activating concentration ranges were determined. It was found that kcat values are significantly decreased and Km values slowly decrease when Mn2+ displaces Mg2+. The value of Kd for DNA template-primer is Me2+-independent, whereas Kd values for non-complementary dNTPs decrease in the presence of Mn2+. Tte-pol processivity but not DNA synthesis efficiency is Me2+-type independent.  相似文献   

14.
The apparent Michaelis constants (Km) of the T4 phage-induced DNA polymerase for the complementary nucleotides, dATP (17 μM) and dTTP (6 μM), are much lower than those obtained with the noncomplementary nucleotides, dGTP (190 μM) or dCTP (1,600 μM) with the homopolymers poly dA · poly dT as template-primer. In control experiments with denatured salmon sperm DNA as a template-primer, the Km values determined separately for each of the 4 dNTP were nearly identical (1.3 μM to 1.9 μM).  相似文献   

15.
16.
17.
18.
19.
This report characterizes for the first time an easy, reproducible means of standardizing the relative fluorescent units normally reported for flow microfluorometry. Absolute values for deoxyribonucleic acid/cell are obtained by using nucleated red blood cells as references. Cell were selected and characterized for the quantitative analysis of deoxyribonucleic acid per cell over a range from 2 pg/cell to 93 pg/cell using literature values for species having nucleated erythrocytes. Fluorescence staining by either acridine-orange (green wavelength) or propidium iodide (red wavelength) gave linear curves over the entire range investigated only when "gain controls" and current are optimized. The range was equivalent to mammalian cell values from 1 N (=3.5 pg deoxyribonucleic acid/cell) to 28 N (=91 pg deoxyribonucleic acid/cell). The standard curves obtained with nonmammalian erythrocytes were compared to mammalian free-cell preparations of bovine thymus and liver cells which fell at 6.8 and 6.9 pg deoxyribonucleic acid/cell, respectively. The routine use of these easily obtainable red blood cells will allow ready comparisons on the basis of absolute values for deoxyribonucleic acid per cell for work between experiments, work between staining procedures and dye types and work between laboratories.  相似文献   

20.
The genes encoding four deoxynucleoside monophosphate kinase (dNMP kinase) enzymes, including ADK1 for deoxyadenylate monophosphate kinase (AK), GUK1 for deoxyguanylate monophosphate kinase (GK), URA6 for deoxycytidylate monophosphate kinase (CK), and CDC8 for deoxythymidylate monophosphate kinase (TK), were isolated from the genome of Saccharomyces cerevisiae ATCC 2610 strain and cloned into E. coli strain BL21(DE3). Four recombinant plasmids, pET17b-JB1 containing ADK1, pET17b-JB2 containing GUK1, pET17b-JB3 containing URA6, and pET17b-JB4 containing CDC8, were constructed and transformed into E. coli strain for over-expression of AK, GK, CK, and TK. The amino acid sequences of these enzymes were analyzed and a putative conserved peptide sequence for the ATP active site was proposed. The four deoxynucleoside diphosphates (dNDP) including deoxyadenosine diphosphate (dADP), deoxyguanosine diphosphate (dGDP), deoxycytidine diphosphate (dCDP), and deoxythymidine diphosphate (dTDP), were synthesized from the corresponding deoxynucleoside monophosphates (dNMP) using the purified AK, GK, CK, and TK, respectively. The effects of pH and magnesium ion concentration on the dNDP biosynthesis were found to be important. A kinetic model for the synthetic reactions of dNDP was developed based on the Bi-Bi random rapid equilibrium mechanism. The kinetic parameters including the maximum reaction velocity and Michaelis-Menten constants were experimentally determined. The study on dNDP biosynthesis reported in this article are important to the proposed bioprocess for production of deoxynucleoside triphosphates (dNTP) that are used as precursors for in vitro DNA synthesis. There is a significant advantage of using enzymatic biosyntheses of dNDP as compared to the chemical method that has been in commercial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号