首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To efficiently simulate very large networks of interconnected neurons, particular consideration has to be given to the computer architecture being used. This article presents techniques for implementing simulators for large neural networks on a number of different computer architectures. The neuronal simulation task and the computer architectures of interest are first characterized, and the potential bottlenecks are highlighted. Then we describe the experience gained from adapting an existing simulator, SWIM, to two very different architectures–vector computers and multiprocessor workstations. This work lead to the implementation of a new simulation library, SPLIT, designed to allow efficient simulation of large networks on several architectures. Different computer architectures put different demands on the organization of both data structures and computations. Strict separation of such architecture considerations from the neuronal models and other simulation aspects makes it possible to construct both portable and extendible code.  相似文献   

3.
On the mathematical modelling of pain   总被引:2,自引:0,他引:2  
In this review a case is presented for the use of mathematical modelling in the study of pain. The philosophy of mathematical modelling is outlined and a recommendation is made for the use of modern nonlinear techniques and computational neuroscience in the modelling of pain. Classic and more recent examples of modelling in neurobiology in general and pain in particular, at three different levels—molecular, cellular and neural networks—are described and evaluated. Directions for further progress are indicated, particularly in plasticity and in modelling brain mechanisms. Major advantages of mathematical modelling are that it can handle extremely complex theories and it is non-invasive, and so is particularly valuable in the investigation of chronic pain. Special issue dedicated to Dr. Herman Bachelard  相似文献   

4.
5.
From at least two months onwards, infants can form perceptual categories. During the first year of life, object knowledge develops from the ability to represent individual object features to representing correlations between attributes and to integrate information from different sources. At the end of the first year, these representations are shaped by labels, opening the way to conceptual knowledge. Here, we review the development of object knowledge and object categorization over the first year of life. We then present an artificial neural network model that models the transition from early perceptual categorization to categories mediated by labels. The model informs a current debate on the role of labels in object categorization by suggesting that although labels do not act as object features they nevertheless affect perceived similarity of perceptually distinct objects sharing the same label. The model presents the first step of an integrated account from early perceptual categorization to language-based concept learning.  相似文献   

6.
Y Salu 《Bio Systems》1985,18(1):93-103
Our environment consists of virtually an infinite number of scenarios in which we have to function. In order to respond properly to an incoming stimulus, the brain has first to analyze it, and to find out the basic familiar elements that are part of it. In other words, by using a library which contains a relatively small number of basic concepts, the brain analyzes the multitude of incoming events. Some of those basic concepts are innate, but many of them must be learned, in order to accommodate for the arbitrary environment around us. A classifying box is defined as the neural network that finds out the familiar concepts that are present in an incoming stimulus. Models for classifying boxes are introduced, and possible mechanisms by which they may establish their libraries of concepts are suggested, and then compared and evaluated by computer simulations.  相似文献   

7.
8.
We review the principal assumptions underlying the application of phase-response curves (PRCs) to synchronization in neuronal networks. The PRC measures how much a given synaptic input perturbs spike timing in a neural oscillator. Among other applications, PRCs make explicit predictions about whether a given network of interconnected neurons will synchronize, as is often observed in cortical structures. Regarding the assumptions of the PRC theory, we conclude: (i) The assumption of noise-tolerant cellular oscillations at or near the network frequency holds in some but not all cases. (ii) Reduced models for PRC-based analysis can be formally related to more realistic models. (iii) Spike-rate adaptation limits PRC-based analysis but does not invalidate it. (iv) The dependence of PRCs on synaptic location emphasizes the importance of improving methods of synaptic stimulation. (v) New methods can distinguish between oscillations that derive from mutual connections and those arising from common drive. (vi) It is helpful to assume linear summation of effects of synaptic inputs; experiments with trains of inputs call this assumption into question. (vii) Relatively subtle changes in network structure can invalidate PRC-based predictions. (viii) Heterogeneity in the preferred frequencies of component neurons does not invalidate PRC analysis, but can annihilate synchronous activity.  相似文献   

9.
10.
11.
Gromiha MM  Suresh MX 《Proteins》2008,70(4):1274-1279
Discriminating thermophilic proteins from their mesophilic counterparts is a challenging task and it would help to design stable proteins. In this work, we have systematically analyzed the amino acid compositions of 3075 mesophilic and 1609 thermophilic proteins belonging to 9 and 15 families, respectively. We found that the charged residues Lys, Arg, and Glu as well as the hydrophobic residues, Val and Ile have higher occurrence in thermophiles than mesophiles. Further, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees and so forth for discriminating mesophilic and thermophilic proteins. We found that most of the machine learning techniques discriminate these classes of proteins with similar accuracy. The neural network-based method could discriminate the thermophiles from mesophiles at the five-fold cross-validation accuracy of 89% in a dataset of 4684 proteins. Moreover, this method is tested with 325 mesophiles in Xylella fastidosa and 382 thermophiles in Aquifex aeolicus and it could successfully discriminate them with the accuracy of 91%. These accuracy levels are better than other methods in the literature and we suggest that this method could be effectively used to discriminate mesophilic and thermophilic proteins.  相似文献   

12.
We report a framework based on a generative adversarial network that performs high‐fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing‐phase‐related artifacts, and generates an accurate color transformation for the reconstructed image. Our framework is experimentally demonstrated using lung and prostate tissue sections that are labeled with different histological stains. This framework is envisaged to be applicable to point‐of‐care histopathology and presents a significant improvement in the throughput of coherent microscopy systems given that only a single hologram of the specimen is required for accurate color imaging.  相似文献   

13.
14.
  1. Camera traps have become an extensively utilized tool in ecological research, but the manual processing of images created by a network of camera traps rapidly becomes an overwhelming task, even for small camera trap studies.
  2. We used transfer learning to create convolutional neural network (CNN) models for identification and classification. By utilizing a small dataset with an average of 275 labeled images per species class, the model was able to distinguish between species and remove false triggers.
  3. We trained the model to detect 17 object classes with individual species identification, reaching an accuracy up to 92% and an average F1 score of 85%. Previous studies have suggested the need for thousands of images of each object class to reach results comparable to those achieved by human observers; however, we show that such accuracy can be achieved with fewer images.
  4. With transfer learning and an ongoing camera trap study, a deep learning model can be successfully created by a small camera trap study. A generalizable model produced from an unbalanced class set can be utilized to extract trap events that can later be confirmed by human processors.
  相似文献   

15.
The ultimate goal of Computational Neuroscience(CNS) is to use and develop mathematical models and approaches to elucidate brain functions.CNS is a young and highly multidisciplinary field.It heavily interacts with experimental neuroscience and such other research areas as artificial intelligence,robotics,computer vision,information science and machine learning.This paper reviews the history of CNS in China,its current status and the prospects for its future development.Examples of CNS research in China are...  相似文献   

16.
Ten years have passed since the Japanese 'Century of the Brain' was promoted, and its most notable objective, the unique 'creating the brain' approach, has led us to apply a humanoid robot as a neuroscience tool. Here, we aim to understand the brain to the extent that we can make humanoid robots solve tasks typically solved by the human brain by essentially the same principles. I postulate that this 'Understanding the Brain by Creating the Brain' approach is the only way to fully understand neural mechanisms in a rigorous sense. Several humanoid robots and their demonstrations are introduced. A theory of cerebellar internal models and a systems biology model of cerebellar synaptic plasticity is discussed. Both models are experimentally supported, but the latter is more easily verifiable while the former is still controversial. I argue that the major reason for this difference is that essential information can be experimentally manipulated in molecular and cellular neuroscience while it cannot be manipulated at the system level. I propose a new experimental paradigm, manipulative neuroscience, to overcome this difficulty and allow us to prove cause-and-effect relationships even at the system level.  相似文献   

17.
18.
This work proposes a novel approach by which to consistently classify cysteine sites in proteins in terms of their reactivity toward dimethyl fumarate (DMF) and fumarate. Dimethyl fumarate‐based drug products have been approved for use as oral treatments for psoriasis and relapsing‐remitting multiple sclerosis. The adduction of DMF and its (re)active metabolites to certain cysteine residues in proteins is thought to underlie their effects. However, only a few receptors for these compounds have been discovered to date. Our approach takes advantage of the growing number of known DMF‐ and fumarate‐sensitive proteins and sites to perform analyses by combining the concepts of network theory, for protein structure analyses, and machine‐learning procedures. Wide‐ranging and previously unforeseen variety is found in the analysis of the neighborhood composition (the first neighbors) of cysteine sites found in DMF‐ and fumarate‐sensitive proteins. Furthermore, neighborhood composition has shown itself to be a network‐type attribute that is endowed with remarkable predictive power when distinct classification algorithms are employed. In conclusion, when adopted in combination with other target identification/validation approaches, methods that are based on the analysis of cysteine site neighbors in proteins should provide useful information by which to decipher the mode of action of DMF‐based drugs.  相似文献   

19.
Identification of partial sweeps, which include both hard and soft sweeps that have not currently reached fixation, provides crucial information about ongoing evolutionary responses. To this end, we introduce partialS/HIC, a deep learning method to discover selective sweeps from population genomic data. partialS/HIC uses a convolutional neural network for image processing, which is trained with a large suite of summary statistics derived from coalescent simulations incorporating population-specific history, to distinguish between completed versus partial sweeps, hard versus soft sweeps, and regions directly affected by selection versus those merely linked to nearby selective sweeps. We perform several simulation experiments under various demographic scenarios to demonstrate partialS/HIC’s performance, which exhibits excellent resolution for detecting partial sweeps. We also apply our classifier to whole genomes from eight mosquito populations sampled across sub-Saharan Africa by the Anopheles gambiae 1000 Genomes Consortium, elucidating both continent-wide patterns as well as sweeps unique to specific geographic regions. These populations have experienced intense insecticide exposure over the past two decades, and we observe a strong overrepresentation of sweeps at insecticide resistance loci. Our analysis thus provides a list of candidate adaptive loci that may be relevant to mosquito control efforts. More broadly, our supervised machine learning approach introduces a method to distinguish between completed and partial sweeps, as well as between hard and soft sweeps, under a variety of demographic scenarios. As whole-genome data rapidly accumulate for a greater diversity of organisms, partialS/HIC addresses an increasing demand for useful selection scan tools that can track in-progress evolutionary dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号