首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histology of cervical ribs of Sauropoda reveals a primary bone tissue, which largely consists of longitudinally oriented mineralized collagen fibres, essentially the same tissue as found in ossified tendons. The absence of regular periosteal bone and the dominance of longitudinal fibres contradict the ventral bracing hypothesis (VBH) postulated for sauropod necks. The VBH predicts histologically primary periosteal bone with fibres oriented perpendicular to the rib long axis, indicative of connective tissue between overlapping hyperelongated cervical ribs. The transformation of the cervical ribs into ossified tendons makes the neck more flexible and implies that tension forces acted mainly along the length of the neck. This is contrary to the VBH, which requires compressive forces along the neck. Tension forces would allow important neck muscles to shift back to the trunk region, making the neck much lighter.  相似文献   

2.
The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The extensive pneumatization of the axial skeleton resulted from the evolution of an avian‐style respiratory system, presumably at the base of Saurischia. An avian‐style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi‐tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals.  相似文献   

3.
The phylogenetic relationships of sauropod dinosaurs   总被引:4,自引:0,他引:4  
A data-matrix of 205 osteological characters for 26 sauropod taxa is subjected to cladistic analysis. Two most parsimonious trees are produced, differing only in the relationships between Euhelopus, Omeisaurus and Mamenchisaurus. The monophyly of the Euhelopodidae (including Shunosaurus) is supported by seven synapomorphies. The Cetiosauridae (Patagosaurus, Cetiosaurus and Haplocanthosaurus) is paraphyletic with respect to the Neosauropoda. The latter clade divides into two major radiations–the ‘Brachiosauria’ (Camarasaurus, brachiosaurids and titanosauroids), and the Diplodocoidea (nemegtosaurids, dicraeosaurids, diplodocids and Rebbachisaurus). Further evidence for the inclusion of Opisthocoelwaudia in the Titanosauroidea is presented. Phuwiangosaurus, a problematic sauropod from Thailand, may represent one of the most plesiomorphic titanosauroids. ‘Peg’-like teeth have evolved at least twice within the Sauropoda. The postspinal lamina, on the neural spines of middle and caudal dorsal vertebrae, represents a neomorph rather than a fusion of pre-existing structures. Forked chevrons may have evolved convergently in the Euhelopodidae and the diplodocid-dicraeosaurid clade, or they may have been acquired early in sauropod evolution and subsequently lost in the ‘Brachiosauria’. The strengths and weaknesses of the data-matrix and tree topologies are explored using bootstrapping, decay analysis and randomization tests. Several nodes are only poorly supported, but this seems to reflect the large proportion of missing data in the matrix (~46%), rather than an abnormally high level of homoplasy. The results of the randomization tests indicate that the ‘data-matrix’ probably contains a strong phylogenetic ‘signal’. The relationships of some forms, such as Haplocanthosaurus, are influenced by the inclusion or exclusion of certain taxa with unusual combinations of character states. Such a result suggests that there are dangers inherent in the view that ‘higher’ level sauropod phylogeny can be accurately reconstructed using only a small number of well-known taxa.  相似文献   

4.
《Current biology : CB》2022,32(7):1635-1640.e4
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

5.
One of the diagnostic characters of dicraeosaurid sauropods is a reduction of pneumatization of dorsal and caudal vertebrae relative to their Flagellicaudata sister taxon, Diplodocidae. Here, we analyse pneumatic structures in the dicraeosaurid sauropod Pilmatueia faundezi, compare them to those of diplodocoids and report the first record of camerate chambers in a dicraeosaurid. The pneumatic structures are in a posterior cervical centrum (MLL-Pv-002) and consist of lateral pneumatic fossae on the centrum that communicate internally with large camerae. By contrast, Pilmatueia's dorsal and caudal vertebrae (MLL-Pv-005-016) lack pneumatic fossae on the centra, which is consistent with the previously reported reduced pneumaticity in dicraeosaurids. Nevertheless, the base of the neural arch and possibly the base of the bifid neural spines of a posterior dorsal vertebra (MLL-Pv-005) show pneumatic internal chambers. The pneumatic features of the Pilmatueia cervical centrum and dorsal neural arch we describe indicate that the degree of pneumatization is variable within dicraeosaurids.  相似文献   

6.
Titanosauriformes was a globally distributed, long‐lived clade of dinosaurs that contains both the largest and smallest known sauropods. These common and diverse megaherbivores evolved a suite of cranial and locomotory specializations perhaps related to their near‐ubiquity in Mesozoic ecosystems. In an effort to understand the phylogenetic relationships of their early (Late Jurassic–Early Cretaceous) members, this paper presents a lower‐level cladistic analysis of basal titanosauriforms in which 25 ingroup and three outgroup taxa were scored for 119 characters. Analysis of these characters resulted in the recovery of three main clades: Brachiosauridae, a cosmopolitan mix of Late Jurassic and Early Cretaceous sauropods, Euhelopodidae, a clade of mid‐Cretaceous East Asian sauropods, and Titanosauria, a large Cretaceous clade made up of mostly Gondwanan genera. Several putative brachiosaurids were instead found to represent non‐titanosauriforms or more derived taxa, and no support for a Laurasia‐wide clade of titanosauriforms was found. This analysis establishes robust synapomorphies for many titanosauriform subclades. A re‐evaluation of the phylogenetic affinities of fragmentary taxa based on these synapomorphies found no body fossil evidence for titanosaurs before the middle Cretaceous (Aptian), in contrast to previous reports of Middle and Late Jurassic forms. Purported titanosaur track‐ways from the Middle Jurassic either indicate a substantial ghost lineage for the group or – more likely – represent non‐titanosaurs. Titanosauriform palaeobiogeographical history is the result of several factors including differential extinction and dispersal. This study provides a foundation for future study of basal titanosauriform phylogeny and the origins of Titanosauria. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 624–671.  相似文献   

7.
Titanosaurs were small- to giant-sized sauropods, highly derived and highly pneumatic. Using morphometric analyses, we studied differences in shape of the presacral vertebral centra in some of these sauropods, especially in saltasaurines, and compared asymmetry patterns in lateral pneumatic foramina (LPF) between these titanosaurs and avian and non-avian theropods. Geometric morphometric analyses showed that the cervical centra tend to be elongated and dorsoventrally short, with an elliptical LPF located in the middle of the centrum; dorsal centra tend to be short and higher than the cervical centra, with the LPF slightly displaced to the anterior region. Shape variation can be described as a result of the ordering of the vertebrae within both the cervical and dorsal sequences, and therefore these methods can be applied to predict the position of isolated vertebrae. A persistent pattern of asymmetry among LPF was observed when length–height indexes were plotted. The right LPF are usually larger than those on the left side in the cervical vertebrae (except in Saltasaurus loricatus) but variable in the dorsal vertebrae. We propose an explanation of this asymmetry based on the asymmetric arrangement of viscera and late development of the respiratory (and air sacs) system.  相似文献   

8.
Osteomyelitis is reported for the first time in a sauropod dinosaur. The material (MCS‐PV 183) comes from the Anacleto Formation (Campanian, Late Cretaceous), at the Cinco Saltos locality, Río Negro Province, Argentina. The specimen consists of 16 mid and mid‐distal caudal vertebrae of a titanosaur sauropod. Evidence of bacterial infection is preserved in all of these vertebrae. The main anomalies are as follows: irregular ‘microbubbly’ texture of bone surfaces produced by periosteal reactive bone, abscesses on the rims of the anterior articular surfaces of two centra, numerous pits on centra anterior articulation surfaces, erosions on the anterior articulation of the vertebral centra, a vertical groove in posterior articular face of all the centra and disruption of the prezygapophysis and postzygapophysis (mainly the articular face) from the vertebra 19 and beyond. The last anomaly is increasingly pronounced in more distal elements of the series. Thin sections reveal that the anomalous cortical tissue is composed of avascular and highly fibrous bone matrix. The fibres of the bone matrix are organized into thick bundles oriented in different directions. Both morphological and histological abnormalities in the MCS‐PV 183 specimen are pathognomonic for osteomyelitis.  相似文献   

9.
Abstract: An isolated anterior caudal vertebra from the Qingshan (= Ch'ing shan) Formation (Early Cretaceous) of Shandong Province, China, is redescribed and shown to be an advanced diplodocid sauropod. This specimen possesses several derived character states that are typically observed in advanced diplodocoids or diplodocids, including the following: a mildly procoelous centrum; a deep pit‐like pneumatic fossa immediately below the caudal rib; wing‐ or fan‐shaped caudal ribs; and complex lamination of the neural spine. The neural spine is apomorphically short and the centrum is short relative to its height compared to those of other diplodocids, which, when coupled with the specimen’s unique geographical location and stratigraphical age, suggests that it probably represents a new taxon. This caudal vertebra provides the first convincing evidence that diplodocids were present in Asia, perhaps as a result of the dispersal of neosauropod lineages from Europe and/or North America during the Early Cretaceous. The discovery of a member of the Diplodocidae in the Early Cretaceous also indicates that this clade did not become extinct at the Jurassic/Cretaceous boundary as previously supposed.  相似文献   

10.
Pneumatic (air‐filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird‐line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large‐bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non‐avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This ‘common pattern’ was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird‐like feature among non‐avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non‐volant, maniraptorans resulted in energetic savings as part of a multi‐system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small‐bodied maniraptorans may indicate avian‐like high‐performance endothermy.  相似文献   

11.
High megaherbivore species richness is documented in both fossil and contemporary ecosystems despite their high individual energy requirements. An extreme example of this is the Late Jurassic Morrison Formation, which was dominated by sauropod dinosaurs, the largest known terrestrial vertebrates. High sauropod diversity within the resource-limited Morrison is paradoxical, but might be explicable through sophisticated resource partitioning. This hypothesis was tested through finite-element analysis of the crania of the Morrison taxa Camarasaurus and Diplodocus. Results demonstrate divergent specialization, with Camarasaurus capable of exerting and accommodating greater bite forces than Diplodocus, permitting consumption of harder food items. Analysis of craniodental biomechanical characters taken from 35 sauropod taxa demonstrates a functional dichotomy in terms of bite force, cranial robustness and occlusal relationships yielding two polyphyletic functional ‘grades’. Morrison taxa are widely distributed within and between these two morphotypes, reflecting distinctive foraging specializations that formed a biomechanical basis for niche partitioning between them. This partitioning, coupled with benefits associated with large body size, would have enabled the high sauropod diversities present in the Morrison Formation. Further, this provides insight into the mechanisms responsible for supporting the high diversities of large megaherbivores observed in other Mesozoic and Cenozoic communities, particularly those occurring in resource-limited environments.  相似文献   

12.
On the cervical vertebrae of the Pterodactyloidea (Reptilia: Archosauria)   总被引:3,自引:0,他引:3  
Within the Pterodactyloidea, the cervical vertebrae show considerable variation. These elements are also sufficiently common and contain enough anatomical information to make them taxonomically valuable. A survey of these vertebrae concludes that most known pterodactyloids fall into two groups: long-necked forms with attenuated cervical vertebrae that possess low neural spines, and tall-spined forms that possess relatively short neck vertebrae with tall neural spines. These two groups may represent natural taxonomic units. However, this is by no means conclusive and can only be tested by the study of other regions of pterodactyloid skeletons.  相似文献   

13.
14.
Almost all mammals have seven vertebrae in their cervical spines. This consistency represents one of the most prominent examples of morphological stasis in vertebrae evolution. Hence, the requirements associated with evolutionary modifications of neck length have to be met with a fixed number of vertebrae. It has not been clear whether body size influences the overall length of the cervical spine and its inner organization (i.e., if the mammalian neck is subject to allometry). Here, we provide the first large‐scale analysis of the scaling patterns of the cervical spine and its constituting cervical vertebrae. Our findings reveal that the opposite allometric scaling of C1 and C2–C7 accommodate the increase of neck bending moment with body size. The internal organization of the neck skeleton exhibits surprisingly uniformity in the vast majority of mammals. Deviations from this general pattern only occur under extreme loading regimes associated with particular functional and allometric demands. Our results indicate that the main source of variation in the mammalian neck stems from the disparity of overall cervical spine length. The mammalian neck reveals how evolutionary disparity manifests itself in a structure that is otherwise highly restricted by meristic constraints.  相似文献   

15.
Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.  相似文献   

16.
The well-preserved histology of the geologically oldest sauropod dinosaur from the Late Triassic allows new insights into the timing and mechanism of the evolution of the gigantic body size of the sauropod dinosaurs. The oldest sauropods were already very large and show the same long-bone histology, laminar fibro-lamellar bone lacking growth marks, as the well-known Jurassic sauropods. This bone histology is unequivocal evidence for very fast growth. Our histologic study of growth series of the Norian Plateosaurus indicates that the sauropod sistergroup, the Late Triassic and early Jurassic Prosauropoda, reached a much more modest body size in a not much shorter ontogeny. Increase in growth rate compared to the ancestor (acceleration) is thus the underlying process in the phylogenetic size increase of sauropods. Compared to all other dinosaur lineages, sauropods were not only much larger but evolved very large body size much faster. The prerequisite for this increase in growth rate must have been a considerable increase in metabolic rate, and we speculate that a bird-like lung was important in this regard.  相似文献   

17.
Polished pebbles occasionally found within skeletons of giant herbivorous sauropod dinosaurs are very likely to be gastroliths (stomach stones). Here, we show that based on feeding experiments with ostriches and comparative data for relative gastrolith mass in birds, sauropod gastroliths do not represent the remains of an avian-style gastric mill. Feeding experiments with farm ostriches showed that bird gastroliths experience fast abrasion in the gizzard and do not develop a polish. Relative gastrolith mass in sauropods (gastrolith mass much less than 0.1% of body mass) is at least an order of magnitude less than that in ostriches and other herbivorous birds (gastrolith mass approximates 1% of body mass), also arguing against the presence of a gastric mill in sauropods. Sauropod dinosaurs possibly compensated for their limited oral processing and gastric trituration capabilities by greatly increasing food retention time in the digestive system. Gastrolith clusters of some derived theropod dinosaurs (oviraptorosaurs and ornithomimosaurs) compare well with those of birds, suggesting that the gastric mill evolved in the avian stem lineage.  相似文献   

18.
Previous research on subfossil lemurs has revealed much about the positional behavior of these extinct strepsirrhines, but a thorough quantitative analysis of their vertebral form and function has not been performed. In this study, 156 lumbar vertebrae of Pachylemur, Archaeolemur, Megaladapis, Mesopropithecus, Babakotia, and Palaeopropithecus (11 species in all) were compared to those of 26 species of extant strepsirrhines and haplorhines. Lumbar shape was compared among species, using a principal components analysis (PCA) in conjunction with selected vertebral indices. The first principal component revealed strong separation between Palaeopropithecus at one extreme, and Archaeolemur/Pachylemur at the other, with Babakotia, Mesopropithecus, and Megaladapis in an intermediate position. Palaeopropithecus has markedly shorter spinous processes and wider laminae than do the other subfossil taxa, consistent with sloth-like, inverted suspensory postures. The moderately reduced lumbar spinous processes of Babakotia, Mesopropithecus, and Megaladapis are convergent with those of lorisids and Pongo, reflecting antipronogrady, but a less specialized adaptation than that of Palaeopropithecus. Archaeolemur and Pachylemur share relatively elongated spinous processes, in conjunction with other features (e.g., transverse process orientation and relatively short vertebral bodies) indicative of pronograde, quadrupedal locomotion characterized by reduced agility. All subfossil taxa exhibit adaptations emphasizing lumbar spinal stability (e.g., relatively short vertebral bodies, and transverse processes that are not oriented ventrally); we believe this probably reflects convergent mechanical demands connected to large body size, irrespective of specific locomotor mode. Reconstructions of positional behavior in subfossil lemurs based on lumbar vertebrae are largely consistent with those based on other aspects of the postcrania.  相似文献   

19.
The age of 296 juvenile scalloped hammerhead sharks Sphyrna lewini caught by several fisheries in the Mexican Pacific Ocean from March 2007 to September 2017 were estimated from growth band counts in thin-sectioned vertebrae. Marginal-increment analysis (MIA) and centrum-edge analysis (CEA) were used to verify the periodicity of formation of the growth bands, whereas elemental profiles obtained from LA-ICP-MS transect scans in vertebrae of 15 juveniles were used as an alternative approach to verify the age of the species for the first time. Age estimates ranged from 0 to 10+ years (42–158.7 cm total length; LT). The index of average percentage error (IAPE 3.6%), CV (5.2%), bias plots and Bowker's tests of symmetry showed precise and low-biased age estimation. Both MIA and CEA indicated that in the vertebrae of juveniles of S. lewini a single translucent growth band was formed during winter (November–March) and an opaque band during summer (July–September), a period of faster growth, apparently correlated with a higher sea surface temperature. Peaks in vertebral P and Mn content spatially corresponded with the annual banding pattern in most of the samples, displaying 1.19 and 0.88 peaks per opaque band, respectively, which closely matched the annual deposition rate observed in this study. Although the periodicity of growth band formation needs to be verified for all sizes and ages representing the population of the species in the region, this demonstration of the annual formation of the growth bands in the vertebrae of juveniles should lead to a re-estimation of the growth parameters and productivity of the population to ensure that it is harvested at sustainable levels.  相似文献   

20.
The present study was designed to investigate how the form of the marsupial thoracolumbar vertebrae varies to cope with the particular demands of diverse loading and locomotor behaviors. The vertebral columns of 10 species of Macropodidae, with various body masses and modes of locomotion, together with two other arboreal marsupials, koala and cuscus, were selected. Seventy-four three-dimensional landmark coordinates were acquired on each of the 10 last presacral vertebrae of the 70 vertebral columns. The interspecific variations of the third lumbar vertebra (L3, which approximates the mean) and the transitional patterns of the thoracolumbar segments were examined using the combined approach of generalized Procrustes analysis (GPA) and principal components analysis (PCA). The results of analyses of an individual vertebra (L3) and of the transitional patterns indicate significant interspecific differences. In the L3 study the first PC shows allometric shape variation, while the second PC seems to relate to adaptation for terrestrial versus arboreal locomotion. When the L3 vertebrae of the common spotted cuscus and koala are included for comparison, the vertebra of the tree kangaroo occupies an intermediate position between the hopping kangaroo and these arboreal marsupials. The L3 vertebrae in the arboreal marsupials possess a distinct dorsoventrally expanded vertebral body, and perpendicularly orientated spinous and transverse processes. The results of the present study suggest that vertebral shape in the kangaroo and wallaroos provides a structural adaptation to hopping through a relatively enlarged loading area and powerful lever system. In contrast, the small-sized bettongs (or rat kangaroos) have a relatively flexible column and elongated levers for the action of back muscles that extend and laterally flex the spine. The complex pattern of vertebral shape transition in the last 10 presacral vertebrae was examined using PCAs that compare between species information about vertebral shape variation along the thoracolumbar column. The results reinforce and emphasize important aspects of the patterns of variation seen in the detailed analysis of the third lumbar vertebra. The results also imply that size, spinal loading pattern, and locomotor behavior exert an influence on shaping the vertebra. Further, the morphological adaptations are consistent within these marsupials and this opens up the possibility that this kind of analysis may be useful in making functional inferences from fossil material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号