首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.  相似文献   

2.
Viral infections can affect the glycosylation pattern of glycoproteins involved in antiviral immunity. Given the importance of protein glycosylation for immune function, we investigated the effect that modulation of the highly conserved HLA class I N-glycan has on KIR:HLA interactions and NK cell function. We focused on HLA-B*57:01 and its interaction with KIR3DL1, which has been shown to play a critical role in determining the progression of a number of human diseases, including human immunodeficiency virus-1 infection. 721.221 cells stably expressing HLA-B*57:01 were treated with a panel of glycosylation enzyme inhibitors, and HLA class I expression and KIR3DL1 binding was quantified. In addition, the functional outcomes of HLA-B*57:01 N-glycan disruption/modulation on KIR3DL1ζ+ Jurkat reporter cells and primary human KIR3DL1+ NK cells was assessed. Different glycosylation enzyme inhibitors had varying effects on HLA-B*57:01 expression and KIR3DL1-Fc binding. The most remarkable effect was that of tunicamycin, an inhibitor of the first step of N-glycosylation, which resulted in significantly reduced KIR3DL1-Fc binding despite sustained expression of HLA-B*57:01 on 721.221 cells. This effect was paralleled by decreased activation of KIR3DL1ζ+ Jurkat reporter cells, as well as increased degranulation of primary human KIR3DL1+ NK cell clones when encountering HLA-B*57:01-expressing 721.221 cells that were pre-treated with tunicamycin. Overall, these results demonstrate that N-glycosylation of HLA class I is important for KIR:HLA binding and has an impact on NK cell function.  相似文献   

3.
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.  相似文献   

4.
An anti-tumor peptide from Musca domestica pupae (MATP) inhibited proliferation of human liver cancer cells HepG2 in a dose-dependent manner. The results of morphology observation indicated that MATP inducing HepG2 cells apoptosis based on the typical apoptotic morphological changes. Flow cytometric analysis demonstrated that MATP caused apoptosis of HepG2 cells through cells arrested at S phase (from 14.26 to 54.38 %) and the apoptotic rates significantly increased (from 1.34 to 25.20 %). The laser scanning confocal microscopy results showed that the generation of intracellular reactive oxygen species (ROS) was increased and the Western blot results revealed that ROS induced a sustained activation of phosphorylated-JNK. Simultaneously, the apoptosis induced by MATP was reversed by NAC (ROS inhibitor) and SP600125 (JNK inhibitor). These results proved that ROS/JNK participated in apoptosis of HepG2 treated with MATP. Moreover, Bax-to-Bcl-2 expression ratio was increased by the activation of phosphorylated-JNK. The release of Cytochrome c from mitochondria which arose the Caspases cascade enhanced by the increase of Bax-to-Bcl-2 expression ratio and intensified the expression of Caspase-9 and Caspase-3. Taken together, these findings suggest that the MATP induces apoptosis through a ROS/JNK-mediated Caspase pathway.  相似文献   

5.
Cell death following photodynamic therapy (PDT) with the photosensitizer Pc 4 involves the intrinsic pathway of apoptosis. To evaluate the importance of Bax in apoptosis after PDT, we compared the PDT responses of Bax-proficient (Bax+/−) and Bax knock-out (BaxKO) HCT116 human colon cancer cells. PDT induced a slow apoptotic process in HCT Bax+/− cells following a long delay in the activation of Bax and release of cytochrome c from mitochondria. Although cytochrome c was not released from mitochondria following PDT in BaxKO cells, an alternative mechanism of caspase-dependent apoptosis with extensive chromatin and DNA degradation was found in these cells. This alternative process was less efficient and slower than the normal apoptotic process observed in Bax+/− cells. Early events upon PDT, such as the loss of mitochondrial membrane potential, photodamage to Bcl-2, and activation of p38 MAP kinase, were observed in both HCT116 cell lines. In spite of differences in the efficiency and mode of apoptosis induced by PDT in the Bax+/− and BaxKO cells, they were found to be equally sensitive to killing by PDT, as determined by loss of clonogenicity. Thus, for Pc 4-PDT, the commitment to cell death occurs prior to and independent of Bax activation, but the process of cellular disassembly differs in Bax-expressing vs. non-expressing cells.  相似文献   

6.
Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.  相似文献   

7.
8.
Glioblastoma is the most common and highly malignant brain tumor. It is also one among the most therapy-resistant human neoplasias. Patients die within a year of diagnosis despite the use of available treatment strategies such as surgery, radiotherapy, and chemotherapy. Thus, there is a critical need to find a novel therapeutic strategy for treating this disease. Here, we have investigated the molecular mechanisms for induction of apoptosis as well as for activation of immune components in human malignant glioblastoma T98G and U87MG cells following treatment with all-trans retinoic acid (ATRA) plus interferon-gamma (IFN-gamma). Treatment of glioblastoma cells with ATRA alone prevented cell proliferation and induced astrocytic differentiation, while IFN-gamma alone induced apoptosis and modulated expression of human leukocyte antigen (HLA) class II molecules such as HLA-DRalpha, HLA-DR complex, invariant chain (Ii), HLA-DM (an important catalyst of the class II-peptide loading), and gamma interferon-inducible lysosomal thiol-reductase (GILT). Interestingly, both T98G and U87MG cells showed more increase in apoptosis with expression of the HLA class II components for an effective immune response following treatment with ATRA plus IFN-gamma than with IFN-gamma alone. Apoptotic mode of cell death was confirmed morphologically by Wright staining and biochemically by measuring an increase in caspase-3 activity. While conversion of tumor cells into HLA class II+/Ii- cells by stimulation with the helper CD4+ T cells is thought to be challenging, this study reports for the first time that treatment of glioblastoma cells with ATRA plus IFN-gamma can simultaneously enhance apoptosis and expression of the HLA class II immune components with a marked suppression of Ii expression. Taken together, this study suggests that induction of apoptosis and immune components of the HLA class II pathway by ATRA plus IFN-gamma may be a promising chemoimmunotherapeutic strategy for treatment of human malignant glioblastoma.  相似文献   

9.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Abieslactone is a triterpenoid lactone isolated from Abies plants. Previous studies have demonstrated that its derivative abiesenonic acid methyl ester possesses anti-tumor-promoting activity in vitro and in vivo. In the present study, cell viability assay demonstrated that abieslactone had selective cytotoxicity against human hepatoma cell lines. Immunostaining experiments revealed that abieslactone induced HepG2 and SMMC7721 cell apoptosis. Flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of CDK2 and cyclin D1. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to upregulation of Bax, down-regulation of Bcl-2, mitochondrial release of cytochrome c, reduction of mitochondrial membrane potential (MMP), and activation of caspase cascades (Casp-9 and -3). Activation of caspase cascades also resulted in the cleavage of PARP fragment. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Recent studies have shown that ROS is upstream of Akt signal in mitochondria-mediated hepatoma cell apoptosis. Our results showed that the accumulation of ROS was detected in HepG2 cells when treated with abieslactone, and ROS scavenger partly blocked the effects of abieslactone-induced HepG2 cell death. In addition, inactivation of total and phosphorylated Akt activities was found to be involved in abieslactone-induced HepG2 cell apoptosis. Therefore, our findings suggested that abieslactone induced G1 cell cycle arrest and caspase-dependent apoptosis via the mitochondrial pathway and the ROS/Akt pathway in HepG2 cells.  相似文献   

11.
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.  相似文献   

12.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

13.
Glioblastoma is the most common malignant brain tumor in humans. We explored the molecular mechanisms how the efficacy of photofrin based photodynamic therapy (PDT) was enhanced by miR-99a transfection in human glioblastoma cells. Our results showed almost similar uptake of photofrin after 24 h in different glioblastoma cells, but p53 wild-type cells were more sensitive to radiation and photofrin doses than p53 mutant cells. Photofrin based PDT induced apoptosis, inhibited cell invasion, prevented angiogenic network formation, and promoted DNA fragmentation and laddering in U87MG and U118MG cells harvoring p53 wild-type. Western blotting showed that photofrin based PDT was efficient to block the angiogenesis and cell survival pathways. Further, photofrin based PDT followed by miR-99a transfection dramatically increased miR-99a expression and also increased apoptosis in glioblastoma cell cultures and drastically reduced tumor growth in athymic nude mice, due to down regulation of fibroblast growth factor receptor 3 (FGFR3) and PI3K/Akt signaling mechanisms leading to inhibition of cell proliferation and induction of molecular mechanisms of apoptosis. Therefore, our results indicated that the anti-tumor effects of photofrin based PDT was strongly augmented by miR-99a overexpression and this novel combination therapeutic strategy could be used for controlling growth of human p53 wild-type glioblastomas both in vitro and in vivo.  相似文献   

14.
A new water-soluble phthalocyanine derivative, 2,3,9,10,16,17,23,24-octakis(3-aminopropyloxy) phthalocyaninato zinc II (PoII) was studied as a photosensitizer for photodynamic therapy (PDT) in MCF-7c3 cells. We report here that PoII and red light induces apoptosis. However, the precise mechanism appears to differ from that induced by PDT with other known phthalocyanines. The present study provides evidence that in the case of PoII, caspases do not participate in the apoptotic response. PoII-PDT-treated cells exhibited chromatin condensation and phosphatidylserine (PS) externalization. In the absence of light activation, PoII had no detectable cytotoxic effect. An early event upon PoII-PDT was photodamage to lysosomes, suggesting that they are the primary sites of action. Moreover, the treatment induces Bid activation, mitochondrial swelling and translocation of apoptosis-inducing factor (AIF) to the nucleus. An atypical proteolysis of poly(ADP-ribose) polymerase (PARP) indicative of calpain-like activation was observed. These data support the notion that an alternative mechanism of caspase-independent apoptosis was found in PoII-photosensitized cells.  相似文献   

15.
Hepatocellular carcinoma (HCC) remains a global health threat. The search for novel anti-HCC agents is urgent. In the current study, we synthesized a liposomal C8 ceramide, and analyzed its anti-tumor activity in pre-clinical HCC models. The liposomal C8 (ceramide) potently inhibited HCC cell (HepG2, SMMC-7721 and Huh-7 lines) survival and proliferation, more efficiently than free C8 ceramide. Yet, non-cancerous HL7702 human hepatocytes were resistant to the liposomal C8 treatment. Liposomal C8 activated caspase-dependent apoptosis in HCC cells, and HCC cytotoxicity by liposomal C8 was significantly attenuated with co-treatment of caspase inhibitors. At the molecular level, we showed that liposomal C8 activated ASK1 (apoptosis signal-regulating kinase 1)-JNK (Jun N-terminal protein kinase) signaling in HCC cells. On the other hand, JNK pharmacological inhibition or dominant negative mutation, as well as ASK1 shRNA-knockdown remarkably inhibited liposomal C8-induced apoptosis in HCC cells. Further studies showed that liposomal C8 inhibited AKT-mTOR (mammalian target of rapamycin) activation in HCC cells. Restoring AKT-mTOR activation by introducing a constitutively-active AKT alleviated HepG2 cytotoxicity by liposomal C8. In vivo, intravenous (i.v.) injection of liposomal C8 significantly inhibited HepG2 xenograft growth in severe combined immuno-deficient (SCID) mice, and mice survival was significantly improved. These preclinical results suggest that liposomal C8 could be further studied as a valuable anti-HCC agent.  相似文献   

16.
17.
Photodynamic therapy (PDT) with a recently developed photosensitizer Zn‐BC‐AM was found to effectively induce apoptosis in a well‐differentiated nasopharyngeal carcinoma (NPC) HK‐1 cell line. Sustained activation of p38 mitogen‐activated protein kinase (MAPK) and c‐jun N‐terminal kinase (JNK) as well as a transient increase in activation of extracellular signal‐regulated kinase (ERK) were observed immediately after Zn‐BC‐AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT‐induced apoptosis of HK‐1 cells. PD169316 also prevented the loss of Bcl‐2 and Bcl‐xL in PDT‐treated HK‐1 cells. However, inhibition of JNK with SP600125 had no effect on Zn‐BC‐AM PDT‐induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn‐BC‐AM PDT‐induced apoptosis. Further study showed that knockdown of the p38β isoform with siRNA also increased Zn‐BC‐AM PDT‐induced apoptosis, indicating that the anti‐apoptotic effect of PD169316 in PDT‐treated HK‐1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38β and ERK may enhance the therapeutic efficacy of Zn‐BC‐AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A novel polysaccharide, MEP-II, isolated from the fermentation broth of Morchella esculenta inhibited the proliferation of human hepatoma cell line (HepG2) through an apoptotic pathway. After HepG2 cells were treated with 150–600 μg MEP-II/ml, typical apoptotic characteristics including externalization of phosphatidylserine residues on the cell surface, nuclear fragmentation, chromatin condensation and cytoplasm shrinkage were observed. Furthermore, reactive oxygen species (ROS) burst and the collapse of mitochondrial membrane potential (Δψm) also occurred in HepG2 cells after incubation of 150–600 μg MEP-II/ml. The antioxidant, 1 mM N-acetyl-l-cysteine inhibited MEP-II-induced apoptosis, suggesting that ROS are the key mediators for MEP-II-induced apoptosis. MEP-II is therefore a potential anti-tumor agent that induces apoptosis of HepG2 cells through ROS generation.  相似文献   

19.
The present study was undertaken to find new ways to improve efficacy of photodynamic therapy (PDT). We investigated the combinatory effect of the photosensitizer Photofrin and ursodeoxycholic acid (UDCA). UDCA is a relatively non-toxic bile acid which is used inter alia as a treatment for cholestatic disorders and was reported to enhance PDT efficiency of two other photosensitizers. Since besides necrosis and autophagic processes apoptosis has been found to be a prominent form of cell death in response to PDT for many cells in culture, several appropriate tests, such as cytochrome c release, caspase activation and DNA fragmentation were performed. Furthermore spectral resolved fluorescence lifetime imaging (SLIM) was used to analyse the cellular composition of Photofrin and the status of the enzymes of the respiratory chain. Our experiments with two human hepatoblastoma cell lines revealed that the combination of Photofrin with UDCA significantly enhanced efficacy of PDT for both cell lines even though the underlying molecular mechanism for the mode of action of Photofrin seems to be different to some extent. In HepG2 cells cell death was clearly the consequence of mitochondrial disturbance as shown by cytochrome c release and DNA fragmentation, whereas in Huh7 cells these features were not observed. Other mechanisms seem to be more important in this case. One reason for the enhanced PDT effect when UDCA is also applied could be that UDCA destabilizes the mitochondrial membrane. This could be concluded from the fluorescence lifetime of the respiratory chain enzymes which turned out to be longer in the presence of UDCA in HepG2 cells, suggesting a perturbation of the mitochondrial membrane. The threshold at which PDT damages the mitochondrial membrane was therefore lower and correlated with the enhanced cytochrome c release observed post PDT. Thus enforced photodamage leads to a higher loss of cell viability.  相似文献   

20.
1-(3′,4′,5′-Trimethoxyphenyl)-3-(3″,4″-dimethoxy-2″-hydroxyphenyl)-propane (DP), a novel synthesized 1,3-diarylpropanes compound, showed growth inhibitory effect on human hepatoma HepG2 cells in a concentration-dependent manner. The growth inhibitory effect of DP on HepG2 cells was associated with microtubule depolymerization, G2/M phase arrest and apoptosis induction. The G2/M phase arrest induced by DP resulted from its microtubule-depolymerizing ability, and DP-treated HepG2 cells finally underwent caspase-dependent apoptosis. DP increased the levels of death receptor 4 (DR4), death receptor 5 (DR5) and pro-apoptotic protein Bax, but decreased the levels of anti-apoptotic protein Bcl-2. Meanwhile, the decrease in the mitochondrial membrane potential (MMP) and the release of cytochrome c from mitochondria were observed in DP-treated HepG2 cells. DP increased the levels of reactive oxygen species (ROS) in HepG2 cells, and antioxidant N-acetylcysteine (NAC) completely blocked DP-induced ROS accumulation and the disruption of the balance between Bax and Bcl-2 proteins, and effectively blocked the decreased MMP and apoptosis, but had no effect on the activation of caspase-8 and the up-regulations of DR4 and DR5 induced by DP. These results suggest that DP induces G2/M phase arrest through interruption of microtubule network followed by the death receptor- and ROS-mediated apoptosis in HepG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号