首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
About 95% of the ultraviolet (UV) photons reaching the Earth’s surface are UV-A (315–400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280–315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and “UV-B photoreceptor” UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8’s role as a UV-B/UV-Asw photoreceptor in sunlight.

In sunlight, UVR8 mediates the perception of both UV-B and short-wavelength UV-A radiation with its sensitivity moderated by blue light perceived through cryptochromes.  相似文献   

2.
We studied the temporal generation of reactive oxygen species (ROS) in the cyanobacterium Anabaena variabilis PCC 7937 under simulated solar radiation using WG 280, WG 295, WG 305, WG 320, WG 335, WG 345, and GG 400 nm cut-off filters to find out the minimum exposure time and most effective region of the solar spectrum inducing highest level of ROS. There was no significant generation of ROS in all treatments in comparison to the samples kept in the dark during the first 8 h of exposure; however, after 12 h of exposure, ROS were significantly generated in samples covered with 305, 295, or 280 nm cut-off filters. In contrast with ROS, the fragmentation of filaments was predominantly seen in 280 nm cut-off filter covered samples after 12 h of exposure. After 24 h of exposure, ROS levels were significantly higher in all samples than in the dark; however, the ROS signals were more pronounced in 320, 305, 295, or 280 nm cut-off filter covered samples. In contrast, the length of filaments was reduced in 305, 295, or 280 nm cut-off filter covered samples after 24 h of exposure. Thus, fragmentation of the filament was induced by all wavelengths of the UV-B region contrary to the UV-A region where only shorter wavelengths were able to induce the fragmentation. In contrast, ROS were generated by all wavelengths of the solar spectrum after 24 h of exposure; however, shorter wavelengths of both the UV-A and the UV-B regions were more effective in generating ROS in comparison to their higher wavelengths and photosynthetic active radiation (PAR). Moreover, lower wavelengths of UV-B were more efficient than the lower wavelengths of the UV-A radiation. Findings from this study suggest that certain threshold levels of ROS are required to induce the fragmentation of filaments.  相似文献   

3.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

4.
Polychromatic response spectra for the induction of UV absorbing mycosporine-like amino acids (MAAs) were calculated after exposing small thalli of the red alga Chondrus crispus under various cut-off filters to natural solar radiation on the North Sea island Helgoland, Germany. The laboratory-grown specimens typically contain only traces of palythine and synthesise five different MAAs rapidly and in high concentrations after being transplanted into shallow water. The resulting qualitative and quantitative patterns of MAA induction differed markedly with respect to spectral distribution. Furthermore, the wavebands effective for MAA induction vary within the MAA. UV-B radiation had a negative effect on the accumulation of the major MAAs shinorine (λmax=334 nm) and palythine (λmax=320 nm), while short wavelength UV-A exhibits the highest quantum efficiency on their synthesis. In contrast, the synthesis of asterina-330 (λmax=330 nm), palythinol (λmax=332 nm) and palythene (λmax=360 nm) was mainly induced by UV-B radiation. Whether the synthesis of shinorine and palythine is induced by a photoreceptor with an absorption maximum in the short wavelength UV-A and whether a second photoreceptor absorbing UV-B radiation is responsible for the induction of asterina-330, palythinol and palythene remains to be studied.Our results show that C. crispus has a high capacity to adapt flexibly the qualitative and quantitative MAA concentration to the prevailing spectral distribution of irradiance. On one hand, this is regarded as an important aspect with respect to the acclimation of algae to increasing UV-B irradiance in the context of ongoing depletion of stratospheric ozone. On the other hand, the experiment demonstrates that UV-A irradiance is more important for the induction of the major MAAs shinorine and palythine than UV-B.  相似文献   

5.
Solar UV-B (280–315 nm) induces the synthesis of phycoerythrin (PE) in a Nostoc species isolated from the Andean high altitude lake Yanaqocha. The outdoor experiments were carried out in a small lake in Erlangen, Germany, using natural conditions. After 2- and 4-h exposure to solar radiation, the immunodetection signal using monoclonal antibodies anti-PE was lower in control cells (exposed to PAR + UV-A) than in cells exposed to total solar radiation (PAR + UV-A + UV-B). Cells exposed at depths in which no UV-B penetrated showed no differences from control cells regarding PE content. When exposed to monochromatic radiation of 280, 300 or 360 nm, purified PE was photodegraded in a wavelength dependent manner resulting in different polypeptide fragments carrying chromophore groups. Immunodetection revealed active synthesis of PE in parallel to photodamage by solar UV-B indicating that PE is important for photoadaptation to shorter wavelengths in the cyanobacterium Nostoc sp.  相似文献   

6.
The physiological effects unique to solar ultraviolet (UV)-B exposure (280-315 nm) are difficult to accurately replicate in the laboratory. This study evaluates the effectiveness of the sodium urate anion in a liquid filter that yields a spectrum nearly indistinguishable from the solar UV-B spectrum while filtering the emissions of widely used UV-B lamps. The photochemical properties and stability of this filter are examined and weighed against a typical spectrum of ground-level solar UV-B radiation. To test the effectiveness of this filter, light-saturated photosynthetic oxygen evolution rates were measured following exposure to UV-B filtered either by this urate filter or the widely used cellulose acetate (CA) filter. The ubiquitous marine Chlorophyte alga Dunaliella tertiolecta was tested under identical UV-B flux densities coupled with ecologically realistic fluxes of UV-A and visible radiation for 6 and 12 h exposures. These results indicate that the urate-filtered UV-B radiation yields minor photosynthetic inhibition when compared with exposures lacking in UV-B. This is in agreement with published experiments using solar radiation. In sharp contrast, radiation filtered by CA filters produced large inhibition of photosynthesis.  相似文献   

7.
8.
Effects of ambient solar UV radiation in the field and of artifical UV irradiation under controlled laboratory conditions were studied with natural phytoplankton populations from Helgoland, German Bight, North Sea. The pattern of pigments varied after UV-A or UV-B plus a low dose of UV-A radiation: UV-A usually induced a stimulation of pigment biosynthesis; whereas UV-B plus UV-A led to a reduction of the contents of chlorophyll a, diadinoxanthin, fucoxanthin, peridinin and an unknown carotenoid; content of diatoxanthin was significantly enhanced. The damaging effect on nitrogen assimilation by UV was more pronounced after artificial UV-B plus UV-A irradiance compared to the influence of ambient solar UV under field conditions. The uptake of inorganic nitrogen was dependent on the dose and exposure time of UV radiation as well as on the species composition. The uptake of 15N-nitrate by natural phytoplankton collected in spring was more sensitive to UV irradiation than the assimilation of 15N-ammonium. UV-A radiation with a small part of shorter wavelengths at 315 nm (Philips-lamps in conjunction with the cut-off filter WG 320) caused a reduction of up to 12% whereas a stimulation of the 15NH4+ uptake was observed after exposure to UV-A without any UV-B (Philips lamps TL 60W/09N). Pattern of 15N-incorporation into free amino acids and pool sizes varied in dependence on the applied nitrogen compound and on the irradiation conditions. The impact of UV radiation on the pattern of 15N-Iabelled free amino acids and the pool sizes was different. 15N enrichment into all the tested amino acids was reduced after 5 h UV-B plus UV-A exposure and after application of 15NH4+. A depression of the glutamate and glutamine pools was observed after addition of 15N-nitrate alone. Pools of all main amino acids from phytoplankton in summer 1993/94 were inhibited by UV irradiance. Results are discussed with reference to the UV target (e.g. enzymes, pigments) and the adaptation to the environmental conditions.  相似文献   

9.
The combined effect of solar radiation (UV-B (280-315 nm), UV-A (315-400 nm) and PAR (400-700 nm)) and vertical mixing (i.e., fluctuating radiation regimes) on the marine dinoflagellates Gymnodinium chlorophorum, Heterocapsa triquetra and Prorocentrum micans was investigated during the austral spring in Patagonia, Argentina. Photosynthesis, measured as radiocarbon incorporation, and accumulation of DNA damage, as cyclobutane pyrimidine dimers (CPDs), were investigated under simulated mixed and non-mixed water column conditions using 3 h incubations centered at local noon. Static samples had significant UVR-induced photoinhibition that was higher in H. triquetra as compared to the other two species. Increasing mixing speed significantly increased UVR-induced inhibition of carbon fixation in G. chlorophorum and H. triquetra. No significant UVR effect was observed in P. micans under any of the mixing regimes. Most of the loss in carbon fixation in G. chlorophorum was due to UV-B while in H. triquetra it was due to UV-A. Part of these responses may be associated to the presence of UV-absorbing compounds which were abundant in P. micans, and low in H. triquetra and in G. chlorophorum. However, other variables such as cell size and active repair might have also influenced our results. We did not detect CPD accumulation in any of the species, probably because of the low solar angle that resulted in very low levels of DNA effective UV-B dose. Our results indicate that exposure to solar UVR in the Patagonia area during spring time (even during ozone depletion events) has a clear impact on photosynthesis and much less or negligible on DNA in the three studied species.  相似文献   

10.
The impact of exclusion of solar UV-B (280–320 nm) and UV-A+B (280–400 nm) radiation on the root nodules was studied in soybean(Glycine max var. MACS 330). Soybean plants were grown in the tropical region of Indore (Latitude-22.4°N), India under field conditions in metal cages covered with polyester exclusion filters that specifically cut off UV-B (<320 nm) and UV-A+B (<400 nm) radiation; control plants were grown under ambient solar radiation. Leghemoglobin content was analyzed in the root nodules on the 50th day after emergence of seedlings. Exclusion of UV radiations significantly enhanced the leghemoglobin content in the nodules on fresh weight basis; 25% and 45% higher amount of leghemoglobin were present in the nodules after the exclusion of UV-B and UV-A+B radiation respectively. Analysis by native and SDS-PAGE showed high intense bands of leghemoglobin after the exclusion of UV-A+B as compared to control. Exclusion of UV radiation also enhanced the growth of roots as well as aerial parts of the plants. UV Exclusion increased nodulation by increase in the number and size of nodules. The results are discussed in the light of advantage of exclusion for enhancing protein/nitrogen content in the plants.  相似文献   

11.
The European light dosimeter network of over 40 stations has been established in Europe and other continents equipped with three-channel filter dosimeters to measure solar radiation in three channels, UV-B (280–315 nm), UV-A (315–400 nm) and photosynthetically active radiation (PAR). The recorded data have been evaluated, and the monthly doses in all three channels show a strong latitudinal dependence from northern Sweden to the Canary Islands. There are a few remarkable exceptions such as the data recorded at the high mountain station on the Zugspitze (German Alps) and unequal doses at stations at comparable latitudes which indicate the impact of local weather conditions and mean sunshine hours. While generally peak values are recorded in the months of June and July, the UV-B maxima are shifted later into the year, which is due to the antagonistic functions of decreasing solar angles and increasing transparency of the atmosphere as the total column ozone decreases in the second half of the year for the Northern Hemisphere. This is supported by comparison with modelled total column ozone and satellite-based measurements. Also the ratios of UV-B:UV-A and UV-B:PAR as well as UV-A:PAR peak during the summer months, with the exception of the northernmost station at Abisko (north Sweden) where the UV-A:PAR ratio peaks in the winter months which is due to the specific photoclimatic conditions north of the polar circle. The penetration of solar radiation into the water column was found to strongly depend on the transparency of the water column. In Gran Canaria more than 10% of the surface UV-B penetrated to 4–5 m depth. The path of the solar eclipse on 11 August 1999 could be followed in several stations with different degrees of occlusion of the sun disk. Received in revised form: 12 May 2000 Electronic Publication  相似文献   

12.
Elevated UV-B radiation effects on experimental grassland communities   总被引:5,自引:0,他引:5  
Experimental grassland communities (turves) were exposed to supplemental levels of UV-B radiation (280–315 nm) at an outdoor facility, under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produce UV-A radiation (315–400 nm). Control treatments consisted of arrays of polyester-filtered lamps, which allowed for exposure to UV-A radiation alone, and arrays of unenergized lamps allowing for exposure to ambient levels of solar radiation.  相似文献   

13.
Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain, suggesting negative effects of global climate change on microalgae inhabiting (circum-) polar regions. For temperate and tropical strains of Chlorella, damage from UVR was independent of temperature but the repair constant increased with increasing temperature, implying an improved ability of these strains to recover from UVR stress under global warming.  相似文献   

14.
Appropriate controls in outdoor UV-B supplementation experiments   总被引:7,自引:0,他引:7  
Quercus robur L. saplings were exposed in an outdoor experiment to supplemental levels of UV-8 (280–315 nm) radiation using treatment arrays of cellulose diacetate-filtered fluorescent lamps that also produce UV-A (315–400 nm) radiation. Saplings were also exposed to UV-A radiation alone using control arrays of the same lamps filtered with polyester and to ambient levels of radiation, using arrays of unenergized lamps. The UV-B treatment was modulated to maintain a 30% elevation above the ambient level of UV-B radiation, measured by a broad-band sensor weighted with an erythemal action spectrum. Saplings exposed to UV-B radiation beneath treatment arrays developed thicker leaves than those beneath ambient and control arrays. Despite the fact that supplemental levels of UV-A radiation were only a small percentage of ambient levels, apparent UV-A effects were also recorded. Significant increases in sapling height, lammas shoot length and herbivory by chewing insects were observed under treatment and control arrays, relative to ambient, but there were no differences between the responses of saplings under treatment and control. These data imply that supplemental UV-A radiation or other effects associated with energised lamps can significantly affect plant growth parameters and herbivory in outdoor studies. We conclude that the results from current outdoor UV-B supplementation experiments that lack control exposures using polyester-filtered lamps need to be interpreted with caution and that future supplementation experiments should include appropriate controls.  相似文献   

15.
The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight.  相似文献   

16.
Field experiments were conducted to determine the effects of exclusion of UV-A/B and UV-B alone on growth parameters, activity of antioxidant enzymes, level of antioxidants and yield, to evaluate the intra-specific variations in sensitivity of these responses in eight soybean (Glycine max) varieties (PK-472, PK-1029, Pusa-24, JS-7105, JS-335, Hardee, NRC-7 and Kalitur). The plants were grown in specially designed UV-exclusion chambers which lined with selective UV filters to exclude either UV-B (<320 nm) or UV-A/B (<400 nm). Plants grown under UV-exclusion filters were compared with those grown under polythene filter which transmitted ambient UV-B and UV-A radiation. The results indicate that the exclusion of solar UV-B and UV-A/B enhanced the vegetative growth (plant height and leaf area), total biomass accumulation and yield (number of seeds and seed weight) of all the varieties as compared with those grown under ambient UV. The activities of SOD, GPX, APX and GR, and levels of ASA were significantly decreased, while α-tocopherol increased after the exclusion of UV-B and UV-A/B in all varieties. These results suggest that the ambient level of UV-B and UV-A radiation evoked some active oxygen species to accumulate, which in turn retarded the growth, development and yield of soybean varieties. On the basis of biomass, UV-B (280–315 nm) sensitivity can be arranged in decreasing order as PK-472 > Hardee > JS-335 > Kalitur > JS 71-05 > Pusa-24 > NRC-7 > PK-1029 and UV-A/B sensitivity can be arranged in decreasing order as PK-472 > Kalitur > JS-335 > Hardee > Pusa-24 > JS 71-05 > NRC-7 > PK-1029. The results indicate var. PK-472 is more sensitive than other varieties and PK-1029 is least sensitive to ambient level of UV radiation. This study in the area of UV-B and UV-A/B stress provides an extensive data that can be used as a predictive basis in crop sciences to further investigate some of the tolerant varieties in field studies.  相似文献   

17.
We tested the effects of solar radiation, and UV-B in particular, on the growth of Antarctic terrestrial fungi. The growth responses to solar radiation of five fungi, Geomyces pannorum, Phoma herbarum, Pythium sp., Verticillium sp., and Mortierella parvispora, each isolated from Antarctic terrestrial habitats, were examined on an agar medium in the natural Antarctic environment. A 3-h exposure to solar radiation of >287 nm reduced the hyphal extension rates of all species relative to controls kept in the dark. Pythium sp. cultures exposed to solar radiation for 1.5 h on five consecutive days were most sensitive to radiation of >287 nm, but radiation of >313 nm also inhibited growth to a lesser extent. Radiation of >400 nm had no effect on hyphal growth relative to controls kept in the dark. Short-wave solar UV-B radiation of between 287 and 305 nm inhibited the growth of Pythium sp. hyphae on and below the surface of the agar medium after 24 h, but radiation of ≥345 nm only reduced the growth of surface hyphae. Similar detrimental effects of UV-B on surface and, to a lesser extent, submerged hyphae of all five fungi were shown in the laboratory by using artificial UV-B from fluorescent lamps. A comparison of growth responses to solar radiation and temperature showed that the species that were most resistant to UV radiation grew fastest at higher temperatures. These data suggest that solar UV-B reduces the growth of fungi on the soil surface in the Antarctic terrestrial environment.  相似文献   

18.
In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.  相似文献   

19.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221-2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter ("UV-A sunlight") accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

20.
Liquid cultures of the terrestrial cyanobacterium Nostoc commune derived from field material were treated with artificial UV-B and UV-A irradiation. We studied the induction of various pigments which are though to provide protection against damaging UV-B irradiation. First, UV-B irradiation induced an increase in carotenoids, especially echinenone and myxoxanthophyll, but did not influence production of chlorophyll a. Second, an increase of an extracellular, water-soluble UV-A/B-absorbing mycosporine occurred, which was associated with extracellular glycan synthesis. Finally, synthesis of scytonemin, a lipid-soluble, extracellular pigment known to function as a UV-A sunscreen, was observed. After long-time exposure, the UV-B effect on carotenoid and scytonemin synthesis ceased whereas the mycosporine content remained constantly high. The UV-B sunscreen mycosporine is exclusively induced by UV-B (< 315 nm). The UV-A sunscreen scytonemin is induced only slightly by UV-B (< 315 nm), very strongly by near UV-A (350 to 400 nm), and not at all by far UV-A (320 to 350 nm). These results may indicate that the syntheses of these UV sunscreens are triggered by different UV photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号