首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the differences between microarray and RNA-Seq technologies for measuring gene expression is necessary for informed design of experiments and choice of data analysis methods. Previous comparisons have come to sometimes contradictory conclusions, which we suggest result from a lack of attention to the intensity-dependent nature of variation generated by the technologies. To examine this trend, we carried out a parallel nested experiment performed simultaneously on the two technologies that systematically split variation into four stages (treatment, biological variation, library preparation and chip/lane noise), allowing a separation and comparison of the sources of variation in a well-controlled cellular system, Saccharomyces cerevisiae. With this novel dataset, we demonstrate that power and accuracy are more dependent on per-gene read depth in RNA-Seq than they are on fluorescence intensity in microarrays. However, we carried out quantitative PCR validations which indicate that microarrays may demonstrate greater systematic bias in low-intensity genes than in RNA-seq.  相似文献   

2.

Background  

As part of its broad and ambitious mission, the MicroArray Quality Control (MAQC) project reported the results of experiments using External RNA Controls (ERCs) on five microarray platforms. For most platforms, several different methods of data processing were considered. However, there was no similar consideration of different methods for processing the data from the Agilent two-color platform. While this omission is understandable given the scale of the project, it can create the false impression that there is consensus about the best way to process Agilent two-color data. It is also important to consider whether ERCs are representative of all the probes on a microarray.  相似文献   

3.
4.
5.
6.
7.
Microarray gene expression data becomes more valuable as our confidence in the results grows. Guaranteeing data quality becomes increasingly important as microarrays are being used to diagnose and treat patients (1-4). The MAQC Quality Control Consortium, the FDA's Critical Path Initiative, NCI's caBIG and others are implementing procedures that will broadly enhance data quality. As GEO continues to grow, its usefulness is constrained by the level of correlation across experiments and general applicability. Although RNA preparation and array platform play important roles in data accuracy, pre-processing is a user-selected factor that has an enormous effect. Normalization of expression data is necessary, but the methods have specific and pronounced effects on precision, accuracy and historical correlation. As a case study, we present a microarray calibration process using normalization as the adjustable parameter. We examine the impact of eight normalizations across both Agilent and Affymetrix expression platforms on three expression readouts: (1) sensitivity and power, (2) functional/biological interpretation and (3) feature selection and classification error. The reader is encouraged to measure their own discordant data, whether cross-laboratory, cross-platform or across any other variance source, and to use their results to tune the adjustable parameters of their laboratory to ensure increased correlation.  相似文献   

8.
9.
10.
The web application D-Maps provides a user-friendly interface to researchers performing studies based on microarrays. The program was developed to manage and process one- or two-color microarray data obtained from several platforms (currently, GeneTAC, ScanArray, CodeLink, NimbleGen and Affymetrix). Despite the availability of many algorithms and many software programs designed to perform microarray analysis on the internet, these usually require sophisticated knowledge of mathematics, statistics and computation. D-maps was developed to overcome the requirement of high performance computers or programming experience. D-Maps performs raw data processing, normalization and statistical analysis, allowing access to the analyzed data in text or graphical format. An original feature presented by D-Maps is GEO (Gene Expression Omnibus) submission format service. The D-MaPs application was already used for analysis of oligonucleotide microarrays and PCR-spotted arrays (one- and two-color, laser and light scanner). In conclusion, D-Maps is a valuable tool for microarray research community, especially in the case of groups without a bioinformatic core.  相似文献   

11.
12.
Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.  相似文献   

13.
Gan X  Liew AW  Yan H 《Nucleic acids research》2006,34(5):1608-1619
Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.  相似文献   

14.
The measurements of coordinated patterns of protein abundance using antibody microarrays could be used to gain insight into disease biology and to probe the use of combinations of proteins for disease classification. The correct use and interpretation of antibody microarray data requires proper normalization of the data, which has not yet been systematically studied. Therefore we undertook a study to determine the optimal normalization of data from antibody microarray profiling of proteins in human serum specimens. Forty-three serum samples collected from patients with pancreatic cancer and from control subjects were probed in triplicate on microarrays containing 48 different antibodies, using a direct labeling, two-color comparative fluorescence detection format. Seven different normalization methods representing major classes of normalization for antibody microarray data were compared by their effects on reproducibility, accuracy, and trends in the data set. Normalization with ELISA-determined concentrations of IgM resulted in the most accurate, reproducible, and reliable data. The other normalization methods were deficient in at least one of the criteria. Multiparametric classification of the samples based on the combined measurement of seven of the proteins demonstrated the potential for increased classification accuracy compared with the use of individual measurements. This study establishes reliable normalization for antibody microarray data, criteria for assessing normalization performance, and the capability of antibody microarrays for serum-protein profiling and multiparametric sample classification.  相似文献   

15.
RNA-Seq and microarray platforms have emerged as important tools for detecting changes in gene expression and RNA processing in biological samples. We present ExpressionPlot, a software package consisting of a default back end, which prepares raw sequencing or Affymetrix microarray data, and a web-based front end, which offers a biologically centered interface to browse, visualize, and compare different data sets. Download and installation instructions, a user's manual, discussion group, and a prototype are available at .  相似文献   

16.
研究两种不同的样本标记方法对人全基因组高密度60mer寡核苷酸芯片背景信号的影响。收集5对患病与健康人外周血单个核细胞,分别提取总RNA后,采用限制性显示技术(restriction display,RD)进行样本双色(Cy3/Cy5)荧光标记,与5张Agilent 60mer高密度(22K)Human 1B寡核苷酸芯片进行杂交。芯片全部杂交点分3组:基因探针组、阳性对照组和阴性对照组。阳性对照采用荧光标记寡核苷酸直接掺入法进行标记。对全部杂交信号点的Cy3和Cy5背景信号值,用SPSS软件进行数据转换、正态性检验、方差齐性检验、变异系数分析和重复数据的方差分析。数据分析结果显示,Cy3 标记的背景信号值均高于 Cy5标记的背景信号值。重复测量数据的方差分析表明,在Cy3 和Cy5标记中,两种不同标记方法间的背景信号值的差异极显著(PCy3<0.01, PCy5<0.01),且RD标记点的背景信号平均值低于荧光标记寡核苷酸直接掺入标记法标记的阳性对照点。RD标记方法是一种有用的低背景信号的高密度长链寡核苷酸芯片样本标记方法。  相似文献   

17.
18.
19.
Are data from different gene expression microarray platforms comparable?   总被引:8,自引:0,他引:8  
Many commercial and custom-made microarray formats are routinely used for large-scale gene expression surveys. Here, we sought to determine the level of concordance between microarray platforms by analyzing breast cancer cell lines with in situ synthesized oligonucleotide arrays (Affymetrix HG-U95v2), commercial cDNA microarrays (Agilent Human 1 cDNA), and custom-made cDNA microarrays from a sequence-validated 13K cDNA library. Gene expression data from the commercial platforms showed good correlations across the experiments (r = 0.78-0.86), whereas the correlations between the custom-made and either of the two commercial platforms were lower (r = 0.62-0.76). Discrepant findings were due to clone errors on the custom-made microarrays, old annotations, or unknown causes. Even within platform, there can be several ways to analyze data that may influence the correlation between platforms. Our results indicate that combining data from different microarray platforms is not straightforward. Variability of the data represents a challenge for developing future diagnostic applications of microarrays.  相似文献   

20.

Background

Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes areCy3 andCy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis) allow hybridization up to four samples simultaneously. The two additional dyes areAlexa488 andAlexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data.

Results

We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalizepdifferently labelled targets co-hybridized on a same array, for any value ofpgreater than 2.

Conclusion

The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号