首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fetal DNA in maternal plasma and serum has been shown to be a useful material for fetal gender determination and for screening tests for abnormal pregnancies except during early gestational ages. Maternal serum samples were obtained from 81 pregnant women during the 5th-10th weeks of gestation. Fetal gender was determined by conventional polymerase chain reaction (PCR) to detect a Y-chromosomal sequence (DYS14) in maternal serum during early gestation and confirmed by examination of the newborns after delivery. Real-time quantitative analyses of the SRY and beta-globin genes were also performed in order to determine fetal gender and to quantify fetal DNA concentration in maternal serum during early gestation. When using conventional PCR, the total sensitivity of identifying a male fetus was 95%, but its sensitivity after the 7th week was 100%, whereas in real-time quantitative PCR, the total sensitivity after the 5th week was 100%. Quantitative analyses of the SRY gene revealed that the mean concentration of fetal DNA in maternal serum was 30.55 copies/ml, that fetal DNA concentration showed a tendency to increase with the progression of pregnancy, and that it had a wide normal range. Thus, we could confidently determine fetal gender by using maternal serum samples taken as early as the 7th week.  相似文献   

2.
Effect of maternal restraint stress on fetal development of ICR mice.   总被引:1,自引:0,他引:1  
The present study was conducted to elucidate the susceptibility of embryos and fetuses at different gestational stages to the maternal stress in mice. Groups of pregnant ICR mice were subjected to daily 12-h restraint stress, taped in the supine position on a plastic board, on gestational days (GD) 1-4, 5-8, 9-12 and 13-16, respectively. Caesarean sections were performed on gestational day 18, and the fetuses were weighed and examined for morphological defects. During the daily restraint for 4 days, the maternal body weights markedly decreased. Although the body weights recovered gradually after termination of the stress, the recovery was not full until the final stage of pregnancy. Interestingly, restraint stress caused growth retardation of the fetuses, leading to a significant decrease in their body weights, and increased early and late resorptions of embryos and fetuses according to the stress periods. Although the preceding (GD1-4) and concurrent (GD5-8) stresses did not affect embryonic implantation, restraint stress on GD9-12 caused cleft palate. Whereas vertebral abnormalities, mainly bipartite ossification, were observed only in animals stressed on GD5-8, abnormalities of sternebrae, exhibiting asymmetric or bipartite ossification, were enhanced by the stress at all of the gestational stages. On the other hand, the incidence of other malformations including renal malposition and costal abnormalities was not increased by stress at any of the 4 stages. Taken together, the results suggest that intensive restraint stress influences the maternal body weight resulting in growth retardation and increased mortality of embryos and fetuses, in addition to gestational stage-specific ventricular dilatation, cleft palate and sternal abnormalities.  相似文献   

3.
Previous studies have demonstrated a role for the beta-adrenergic system in the maturation of the fetal alveolar epithelium. Chronic blockade of beta-adrenergic binding sites has been shown to adversely effect physiologic and biochemical indices of fetal lung maturation. In the present study timed-pregnant female Sprague-Dawley rats were treated with a continuous 0.5 mg/hr dose of propranolol HCl, or saline, via an osmotic pump. The treatment periods were days 18-21, or 20-23 of gestation. Fetal body weights were obtained, and the morphology of the fetal lungs studied by light and electron microscopy. Cytoplasmic volume densities of lamellar inclusion bodies and glycogen within developing type II alveolar epithelial cells were also determined. In addition, total phospholipids (as phosphorus) and glycogen content were determined biochemically. The fetuses from females treated from day 20-23 demonstrated no differences between saline-treated and propranolol-treated groups, in either fetal weight or the morphologic appearance of the developing lung. In contrast, the fetuses from mothers treated from day 18-21 with propranolol were significantly smaller, and their lungs appeared less mature than saline-treated counterparts. The glycogen content of developing type II alveolar epithelial cells was significantly more abundant (as judged by stereologic and biochemical analyses) in the propranolol-treated fetuses. In addition, total phospholipids were decreased in the propranolol-treated 21-day fetuses. The results of the present study suggest that the development of the alveolar epithelium is sensitive to continuous beta-adrenergic blockade by propranolol during a critical time late in gestation.  相似文献   

4.
S N Baksi 《Endokrinologie》1979,73(3):264-272
Female rats were thyroparathyroidectomized (TPTX) at 24 (immature), 40 (pubertal) and 75 (matured) days of age, at least 21 days before mating. Thyroxine (2.5 microgram/kg) or parathyroid hormone (150 USP units/kg x 2) was replaced in two TPTX groups. Thyroxine deficient groups of all ages had reduced body weight, litter size and serum thyroxine and calcium level. Fetal weights at 20 days of gestation in all thyroxine deficient groups were significantly reduced but placental weight was generally increased. Maternal serum thyroxine and fetal weight was positively related when all groups were taken together, but maternal serum calcium and fetal weight was not related. There were no significant differences in gross, visceral or skeletal anomalies in the fetuses in any group.  相似文献   

5.
6.
Chinese medicine is a common name for a collection of Chinese Materia Medica with therapeutic properties for medical treatment and healing. Similar to Western pharmaceuticals, Chinese medicines are not free of risk, and have the potential to cause adverse pregnancy outcomes and affect embryonic and fetal development. However, most clinical data concerning safety of maternal exposure to Chinese medicines during pregnancy are not available and the conclusion remains elusive. Some individual clinical trials of Chinese medicines reported some minor adverse effects during pregnancy, whereas few animal studies identified some adverse maternal and perinatal effects, as well as embryotoxic potentials. Basic research and mechanistic studies of the teratogenicity of Chinese medicines are still lacking. There is an urgent need for testing the safety of Chinese medicines before recommendation and commercialization. Until more reliable and scientific research data become available, clinicians should consider both the risks and benefits before recommending Chinese medicines to pregnant women. More systematic investigations of the safety implications of the use of Chinese medicines are highly recommended, in addition to more clinical trials with a larger sample size to confirm its safety during pregnancy. This review includes a critical overview of available clinical and experimental data and provides directions to study the safety issue of Chinese medicines for pregnancy. Birth Defects Research (Part C) 99:275–291, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The effect of maternal nutrient restriction on mTOR (mammalian target of rapamyosin) signaling and the ubiquitin system as well as their possible relation to growth of fetal muscle was determined. Ewes were fed to 50% (nutrient-restricted) or 100% (control-fed) of total digestible nutrients (National Research Council requirement) from Days 28 to 78 of gestation. Ewes were killed at Day 78 of gestation, and the fetal longissimus dorsi muscle was sampled for the measurement of mTOR, ribosomal protein S6, AMP-activated protein kinase (AMPK), calpastatin, and protein ubiquitylation. No difference was observed in the content of mTOR and ribosomal protein S6, but the phosphorylation of mTOR at Ser2448 and ribosomal protein S6 at Ser235/336 were reduced (P <0.05) in muscle from nutrient-restricted fetuses. Because phosphorylation of mTOR and ribosomal protein S6 up-regulates protein translation, these results show that nutrient restriction down-regulates protein synthesis in fetal muscle. No difference in AMPK activity was detected. The lack of difference in calpastatin and ubiquitylized protein content shows that nutrient restriction did not affect degradation of myofibrillar proteins in fetal muscle. Fetuses of nutrient-restricted ewes showed retarded development of muscles and skeleton. Muscle from nutrient-restricted fetuses contained fewer secondary myofibers than muscle from control fetuses, and the average area of fasciculi was smaller (P <0.05). The decreased number of secondary myofibers in nutrient-restricted fetuses may result from the decreased mTOR signaling. Lower activation of mTOR signaling in nutrient-restricted fetuses may reduce the proliferation of myoblasts and, thus, reduce the formation of secondary myofibers. This decrease in secondary myofibers in fetuses may predispose fetuses to metabolic diseases, such as diabetes and obesity, in their postnatal lives.  相似文献   

8.
Dr. J. A. Sturman  P. Lu 《Amino acids》1997,13(3-4):369-377
Summary We report the effects of four levels of maternal dietary taurine on the cerebellum of 45-day gestation fetuses. As we have previously reported for newborn and 8-week-old kittens, maternal dietary taurine content has a profound effect also on fetal cerebellum. Fetuses from queens fed the lowest amount of taurine had the greatest density of granule cells, probably because of smallest brain size, and had a high proportion of morphological abnormalities. Somewhat surprising was the observation that the fetuses from the lowest maternal dietary taurine group had the highest proportion of taurine-positive granule cells. In addition, these results confirm the vulnerability of developing fetal brain to its intrauterine environment.  相似文献   

9.
Pregnant Swiss Webster mice were given a liquid diet with ethanol (EtOH) or isocaloric amounts of maltose dextrin on gestation day (GD) 0 through 18. On GD 18, maternal blood samples were obtained. Fetuses were then removed and fetal brains were prepared for light microscopy. Fetal weight was reduced in the EtOH-exposed group. The ratio of midbrain cross sectional area to cerebral aqueduct was reduced in the ethanol group, while the density of neuronal nuclear population in both the dense outer layer (DS) and sparse inner layer (SS) of the developing superior colliculus was increased. Mean nuclear volume was decreased in the SS.  相似文献   

10.

Aim

Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas.

Methods

Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro.

Results

Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age.

Conclusions

GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass.  相似文献   

11.
It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring.Our data may have significant relevance for understanding the impact of suboptimal iron levels during pregnancy not only on the mother but also on the developing fetus and hence might lead to a more informed timing of iron supplementation during pregnancy.  相似文献   

12.
High-resolution 1H NMR spectroscopy was employed to explore the complexation of Ca2+ by low-molecular-mass biomolecules in human saliva. The results acquired revealed that the organic acid anion (OAA) citrate acts as a powerful oxygen-donor chelator for salivary Ca2+, and accurate determination of its resonances' frequencies and spin-system pattern could be successfully utilized to determine its degree of saturation with this metal ion. Computer modelling studies demonstrated that the OAA lactate is the only competing salivary Ca2+ complexant available. Moreover, the Ca2+-complexation status of salivary citrate is substantially modified by dentifrice-mediated elevations in its concentration. 1H NMR analysis was also applied to determinations of the Ca2+ saturation status of citrate in a variety of alternative biofluids and the biochemical significance of these results is discussed.  相似文献   

13.
14.
15.
A signal analysis procedure is described for obtaining the power spectrum of the fetal and maternal heart rates as recorded from the abdomen. This technique, which includes the subtraction of an averaged maternal ECG waveform using a cross-correlation function and the fast Fourier transform algorithm, enables the detection of all the fetal QRS complexes in spite of their coincidence with the maternal ECGs. The power spectrum of the fetal heart rates (FHR) obtained from 15 women at 32–41 weeks gestation were studied and two indices were measured which are related to the long term and short term variabilities in the FHR signal. It was found that quantitative evaluation of the FHR variability can be obtained using power spectrum analysis.  相似文献   

16.
Effects of streptozotocin-induced maternal diabetes on fetal hepatic carbohydrate-metabolizing enzyme development and hormonal status has been explored in the rat. Hepatic glycogen synthase a activity of the normal fetus rose to a maximum at 20 days of gestation, then fell prior to parturition. In fetuses of diabetic mothers, this prepartum decline was curtailed, resulting in enhanced synthase a activity and increased glycogen content in fetal livers at term. Elevation in hepatic synthase a in fetuses of diabetic mothers was due, not to altered interconversion between existing synthase a and b, but to equivalent increases in both forms of the enzyme. Both hepatic and free plasma corticosterone levels were elevated in fetuses of diabetic mothers and may be responsible for the enhanced development of total glycogen synthase observed in these fetuses. In normal fetuses hepatic phosphofructokinase and pyruvate kinase activities also rose to maxima at 20 days, then declined prior to term. In fetuses of diabetic mothers pyruvate kinase activity attained higher than normal maximal levels and phosphofructokinase activity fell more gradually, thus resulting in elevations in both enzyme activities at term. Augmentations in these glycolytic enzymes are compatible with hyperinsulinemia observed in fetuses of diabetic mothers. The following conclusions may be drawn from these findings. During late fetal life developmental patterns of rate-limiting hepatic glycogen-synthesizing and glycolytic enzymes are adapted to glucose utilization. In the normal fetus these patterns reverse at term, thereby promoting glucose mobilization, which prepares the fetus for abrupt deprivation of maternal glucose at birth. Maternal diabetes results in retardation of these reversal processes, presumably due to elevations in fetal glucocorticoid and insulin levels. Glycogenolytic and glucogenic capacities are thereby impaired in these fetuses.  相似文献   

17.
In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.  相似文献   

18.
The purpose of the present study was to observe the effects of strenuous maternal aerobic exercise throughout gestation on fetal outcome in the rat. The strenuous exercise intensity consisted of a treadmill speed of 30 m.min-1 on a 10 degrees incline, for 120 min.day-1, 5 days.week-1. The rats were conditioned to run on a motor-driven treadmill by following a progressive two-week exercise program, so that by the end of the two weeks the rats were capable of running comfortably at this strenuous intensity in the non-pregnant state. Following the two-week running programme, the rats were paired by weight and randomly assigned to either a pregnant group that continued the running program throughout gestation (pregnant runner), or a pregnant group that did not continue the running program throughout pregnancy (pregnant control). At birth the neonates born to the pregnant running group did not differ in average neonatal body weight values, number per litter or total litter weight values when compared to controls, nor were superficial gross abnormalities observed in neonates born to the pregnant control or pregnant running groups. The strenuous maternal exercise intensity did not alter neonatal organ weight values (brain, heart, liver, lung, kidney), nor neonatal skeletal muscle (gastrocnemius, sternomastoid, diaphragm) when compared to control values. It is suggested that maternal exercise of this intensity throughout gestation does not affect fetal outcome in the rat, and may be due to the animals accustomization to the strenuous exercise protocol prior to pregnancy.  相似文献   

19.
Oxygen molecules have a great impact on protein evolution. We have performed a comparative study of key photosynthetic proteins in order to seek the answer to the question; did the evolutionary substitution of oxygen- and nitrogen-containing residues in the photosynthetic proteins correspond to nutrient constraints and metabolic optimization? The D1 peptide in RC II complexes has higher oxygen-containing amino acid residues and PufL/PufM have lower oxygen content in their peptides. In this article, we also discuss the possible influences of micro-environment and the available nutrients on the protein structure and their atomic distribution.  相似文献   

20.
BackgroundNon-B DNA conformations are molecular structures that do not follow the canonical DNA double helix. Mutagenetic instability in nuclear and mitochondrial DNA (mtDNA) genomes has been associated with simple non-B DNA conformations, as hairpins or more complex structures, as G-quadruplexes. One of these structures is Structure A, a cloverleaf-like non-B conformation predicted for a 93-nt (nucleotide) stretch of the mtDNA control region 5′-peripheral domain. Structure A is embedded in a hot spot for the 3′ end of human mtDNA deletions revealing its importance in influencing the mutational instability of the mtDNA genome.MethodsTo better characterize Structure A, we predicted its 3D conformation using state-of-art methods and algorithms. The methodologic workflow consisted in the prediction of non-B conformations using molecular dynamics simulations. The conservation scores of alignments of the Structure A region in humans, primates, and mammals, was also calculated.ResultsOur results show that these computational methods are able to measure the stability of non-B conformations by using the level of base pairing during molecular dynamics. Structure A showed high stability and low flexibility correlated with high conservation scores in mammalian, more specifically in primate lineages.ConclusionsWe showed that 3D non-B conformations can be predicted and characterized by our methodology. This allowed the in-depth analysis of the structure A, and the main results showed the structure remains stable during the simulations.General significanceThe fine-scale atomic molecular determination of this type of non-B conformation opens the way to perform computational molecular studies that can show their involvement in mtDNA cellular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号