首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, allometric trajectories for 51 rodent species, comprising equal representatives from each of the major clades (Ctenohystrica, Muroidea, Sciuridae), are compared in a multivariate morphospace (=allometric space) to quantify magnitudes of disparity in cranial growth. Variability in allometric trajectory patterns was compared to measures of adult disparity in each clade, and dietary habit among the examined species, which together encapsulated an ecomorphological breadth. Results indicate that the evolution of allometric trajectories in rodents is characterized by different features in sciurids compared with muroids and Ctenohystrica. Sciuridae was found to have a reduced magnitude of inter‐trajectory change and growth patterns with less variation in allometric coefficient values among members. In contrast, a greater magnitude of difference between trajectories and an increased variation in allometric coefficient values was evident for both Ctenohystrica and muroids. Ctenohystrica and muroids achieved considerably higher adult disparities than sciurids, suggesting that conservatism in allometric trajectory modification may constrain morphological diversity in rodents. The results provide support for a role of ecology (dietary habit) in the evolution of allometric trajectories in rodents.  相似文献   

2.
We explored the ontogenetic dynamics of the morphological and allometric disparity in the cranium shapes of twelve lacertid lizard species. The analysed species (Darevskia praticola, Dinarolacerta mosorensis, Iberolacerta horvathi, Lacerta agilis, L. trilineata, L. viridis, Podarcis erhardii, P. melisellensis, P. muralis, P. sicula, P. taurica and Zootoca vivipara) can be classified into different ecomorphs: terrestrial lizards that inhabit vegetated habitats (habitats with lush or sparse vegetation), saxicolous and shrub‐climbing lizards. We observed that there was an overall increase in the morphological disparity (MD) during the ontogeny of the lacertid lizards. The ventral cranium, which is involved in the mechanics of jaw movement and feeding, showed higher levels of MD, an ontogenetic shift in the morphospace planes and more variable allometric patterns than more conserved dorsal crania. With respect to ecology, the allometric trajectories of the shrub‐climbing species tended to cluster together, whereas the allometric trajectories of the saxicolous species were highly dispersed. Our results indicate that the ontogenetic patterns of morphological and allometric disparity in the lacertid lizards are modified by ecology and functional constraints and that the identical mechanisms that lead to intraspecific morphological variation also produce morphological divergence at higher taxonomic levels.  相似文献   

3.
Morphological divergence of domesticated as compared to wild forms must result from changes in the ontogenetic process. Species‐specific tests for heterochrony have rejected a single explanation of domestic forms representing juveniles of their wild relatives. Ontogenetic allometric trajectories for 12 pairs of wild and domestic mammals were examined using skull growth data for 1070 specimens, including representatives from all lineages in which domestication has occurred. A suite of tests were performed to quantify allometric disparity in wild and domestic forms and assess the extent and patterning of modification to allometric trajectories. Domestication has modified postnatal ontogenetic allometric trajectories in mammals, and has generated disparity, achieved through lengthening of trajectory slopes and alteration to slope angles. Allometric disparity was similar for domestic forms compared to their wild relatives, whereas the magnitude of dispersion along allometric vectors differed between precocial mammals and altricial mammals, underscoring the importance of life history and shared evolutionary history in patterns of ontogenetic variation. The results verify the importance of scaling in the morphological changes associated with domestication. The response to domestication for all measured trajectory parameters was variable across species, suggesting multiple pathways of change.  相似文献   

4.
Here, we advance novel uses of allometric spaces--multidimensional spaces specifically defined by allometric coefficients--with the goal of investigating the focal role of development in shaping the evolution of morphological disparity. From their examination, operational measures of allometric disparity can be derived, complementing standard signals of morphological disparity through an intuitive and process-oriented refinement of established analytical protocols used in disparity studies. Allometric spaces thereby become a promising context to reveal different patterns of evolutionary developmental changes and to assess their relative prevalence and importance. Such spaces offer a novel domain of investigation of phenotypic variation and should help in detecting large-scale trends, thus placing various macroevolutionary phenomena in an explicitly developmental context. Ammonoidea (Cephalopoda) at the Lower-Middle Jurassic transition were chosen as a case study to illustrate this methodological approach. We constructed two phenotypic spaces: a static, adult one (adult morphospace) and a dynamic, developmental one (allometric space). Comparative disparity analyses show a strikingly stable occupation in both spaces, despite extensive change in taxonomic composition. In contrast, disparity analyses of subclades reveal clearly distinct morphological and allometric disparity dynamics. Allometric approaches allow developmental insights into morphological diversification otherwise intractable from the analysis of adult morphospace alone.  相似文献   

5.
The diets of 21 terapontid species from freshwater environments in northern Australia were investigated to determine the similarity and dissimilarity among species and the extent of any ontogenetic shifts. Distinct ontogenetic dietary shifts occurred in all species for which sufficient data were available, with many species passing through several discrete trophic categories during their life histories. Diets of all juvenile terapontids were similar, mainly comprising aquatic insects and zooplankton. Larger size classes of terapontids diverged into a broad spectrum of feeding groups comprising carnivorous dietary modes (including piscivory and lepidophagy), omnivory (including frugivory and consumption of allochthonous prey), herbivory and detritivory. The results indicate that the terapontids represent Australia's most trophically diverse freshwater fish family.  相似文献   

6.
Chewing on different food types is a demanding biological function. The classic assumption in studying the shape of feeding apparatuses is that animals are what they eat, meaning that adaptation to different food items accounts for most of their interspecific variation. Yet, a growing body of evidence points against this concept. We use the primate mandible as a model structure to investigate the complex interplay among shape, size, diet, and phylogeny. We find a weak but significant impact of diet on mandible shape variation in primates as a whole but not in anthropoids and catarrhines as tested in isolation. These clades mainly exhibit allometric shape changes, which are unrelated to diet. Diet is an important factor in the diversification of strepsirrhines and platyrrhines and a phylogenetic signal is detected in all primate clades. Peaks in morphological disparity occur during the Oligocene (between 37 and 25 Ma) supporting the notion that an adaptive radiation characterized the evolution of South American monkeys. In all primate clades, the evolution of mandible size is faster than its shape pointing to a strong effect of allometry on ecomorphological diversification in this group.  相似文献   

7.
Aim Diversity and disparity metrics of all Recent cuttlefishes are studied at the macroevolutionary scale (1) to establish the geographical biodiversity patterns of these cephalopods at the species level and (2) to explore the relationships between these two metrics. Location Sampling uses what is known about these tropical, subtropical and warm temperate cephalopods of the Old World based on a literature review and on measurements of museum specimens. Some 111 species spread across seventeen biogeographical areas serve as basic units for exploring diversity and disparity metrics in space. Methods Landmarks describe the shape of the cuttlebone (the inner shell of the sepiids) and differences between shapes are quantified using relative warp analyses. Relative warps are thus used as the morphological axis for constructing morphospaces whose characteristics are described by disparity indices: total variance, range, and minimum and maximum of relative warps. These are analysed and then compared with the diversity (species richness) metric. Results Results show no significant latitudinal or longitudinal gradients either for diversity or for disparity. Around the coast of southern Africa, disparity is high regardless of whether diversity (species richness) is high or low. In the ‘East Indies’ area disparity is low despite the high diversity. Main conclusions The relationship between diversity and disparity is clearly not linear and no simple adjustment models seem to fit. The number of species in a given area does not predict its disparity level. The particular pattern of southern Africa may be the result of paleogeographical changes since the Eocene, whereas that of the ‘East Indies’ may indicate that this area could act as a centre of origin. However, the lack of any clear phylogenetical hypothesis precludes the study from providing any explanation of the observed patterns.  相似文献   

8.
It has been documented extensively that body size affects the physiology and musculoskeletal function of organisms. However, less well understood is how body size affects the ecology of organisms through its effects on physiology and performance. We explored the effects of body size on morphology and performance in different ontogenetic classes and sexes of a common Anolis lizard ( A. lineatopus ). Next, we tested whether these morphological and performance differences may affect functional aspects of the diet such as prey size and prey hardness. Our data showed that males, females and juveniles differ significantly in head size, head shape and bite force. Multiple regression models indicated that head shape and bite force are significantly correlated to prey size and hardness. Yet juveniles had relatively large heads and bit disproportionately hard for their size, allowing them to eat prey as large as those of females. However, for a given prey size, males and females ate more robust prey than did juveniles. Additionally, males ate relatively harder prey than did juveniles. These data suggest that: (1) body size affects the dietary ecology of animals through its effect on head size and bite force; (2) changes in head morphology independent of changes in overall size also have important effects on performance and diet.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 443–454.  相似文献   

9.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

10.
11.
Morphological disparity has increasingly been used as an alternative measure of biological diversity based on the shape features of organisms. In this study, we investigated the species diversity and morphological disparity of benthic Desmidiales in Central European peatland pools. The shape features of cells were determined using the 3-D elliptical Fourier analysis of their frontal and lateral views. The resulting morphospace was used to calculate the contributions of localities and species to the morphological variation. In addition, the disparity of samples and their average cell complexity (indicating intricacy of cell shapes) was evaluated. These data were related to species diversity data and to the abiotic factors. Species diversity was positively correlated with pH and conductivity. The low-pH localities generally supported a more variable species composition than did slightly acidic to neutral localities. Conversely, the total nitrogen concentrations of these areas negatively correlated with species diversity. Interestingly, partial morphological disparity (measuring the contribution of a sample to the overall morphological variation) did not correlate with species diversity. On the contrary, several mountain peat bog localities had high disparity values, irrespective of their rather low species diversity. In addition, several samples from minerotrophic fens with high diversity had average or low values of partial morphological disparity. These results indicate the relative importance of mountain peat bogs for the total morphological diversity of Desmidiales within the region that could not be ascertained solely from species diversity data. The inner morphological disparity of samples was highly correlated with their species diversity. Species of the genus Micrasterias, Hyalotheca dissiliens and Desmidium species had the highest partial morphological disparity, thus indicating their marginal position within the morphospace. Micrasterias and Euastrum species had the highest complexity values. The average cell complexity of individual samples did not correlate with their diversity or disparity; however, it was positively correlated with the levels of total nitrogen and phosphorus, and illustrates a pattern different from that arrived at by species diversity data. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: J. Padisak  相似文献   

12.
13.
Early development of Siberian sturgeon Acipenser baeri was divided into two different phases, the prelarval stage between hatching (10·4–11·1 mm LT) and first feeding (19·6–21·0 mm LT), and the larval stage between the initiation of external feeding and metamorphosis (28·6–32·4 mm LT). Morphogenesis and differentiation were more intense during the prelarval than larval and early juvenile stages; the prelarval period was characterized by the replacement of embryonic adaptations and functions by definitive ones, such as branchial respiration, exogenous feeding, and active swimming. The positive allometry of the head for feeding, sensorial and respiratory functions (inflexion point at 20·0 mm LT), and the tail for reducing costs of transport, routine swimming and escape reactions from predators (inflexion point at 20·2 mm LT) confirmed the hypothesis that growth patterns of early life stages closely match specific needs.  相似文献   

14.
The skeleton is a complex arrangement of anatomical structures that covary to various degrees depending on both intrinsic and extrinsic factors. Among the Feliformia, many species are characterized by predator lifestyles providing a unique opportunity to investigate the impact of highly specialized hypercarnivorous diet on phenotypic integration and shape diversity. To do so, we compared the shape of the skull, mandible, humerus, and femur of species in relation to their feeding strategies (hypercarnivorous vs. generalist species) and prey preference (predators of small vs. large prey) using three-dimensional geometric morphometric techniques. Our results highlight different degrees of morphological integration in the Feliformia depending on the functional implication of the anatomical structure, with an overall higher covariation of structures in hypercarnivorous species. The skull and the forelimb are not integrated in generalist species, whereas they are integrated in hypercarnivores. These results can potentially be explained by the different feeding strategies of these species. Contrary to our expectations, hypercarnivores display a higher disparity for the skull than generalist species. This is probably due to the fact that a specialization toward high-meat diet could be achieved through various phenotypes. Finally, humeri and femora display shape variations depending on relative prey size preference. Large species feeding on large prey tend to have robust long bones due to higher biomechanical constraints.  相似文献   

15.
Several theories predict that rapidly diversifying clades will also rapidly diverge phenotypically; yet, there are also reasons for suspecting that diversification and divergence might not be correlated. In the widely distributed squirrel clade (Sciuridae), we test for correlations between per lineage speciation rates, species richness, disparity, and a time‐invariant measure of disparity that allows for comparing rates when evolutionary modes differ, as they do in squirrels. We find that species richness and speciation rates are not correlated with clade age or with each other. Disparity appears to be positively correlated with clade age because young, rapidly diversifying Nearctic grassland clades are strongly pulled to a single stable optimum but older, slowly diversifying Paleotropical forest clades contain lineages that diverge along multiple ecological and morphological lines. That contrast is likely due to both the environments they inhabit and their phylogenetic community structure. Our results argue against a shared explanation for diversity and disparity in favor of geographically mediated modes of speciation and ecologically mediated modes of phenotypic evolution.  相似文献   

16.
Although habitat selection has been studied in a variety of snake taxa, little is known about habitat selection in aquatic snake species. Additionally, due to their small size and secretive nature, juvenile snakes are seldom included in habitat selection studies. The Eastern cottonmouth Agkistrodon piscivorus is a semi-aquatic pit viper known to use ambush, sit-and-wait foraging strategies. Ambush hunters are likely to select habitats that increase opportunity for successful prey capture while minimizing predation risk and maintaining appropriate thermal and hydric conditions. We characterized the foraging strategy and microhabitat use of cottonmouths at Ellenton Bay, an isolated Carolina bay freshwater wetland on the Savannah River Site in SC, USA. We measured habitat characteristics of 55 ambush sites used by 51 individual cottonmouths located during nighttime visual surveys, as well as 225 randomly selected sites within our search area. Cottonmouths exhibited an ontogenetic shift in foraging strategy with juveniles using predominately ambush foraging around the edge of the wetland while adults were most often encountered actively moving within the wetland. Principal components analysis revealed that juveniles selected foraging microhabitats that were different from random and consisted of mud substrate with sparse vegetation, whereas adults occupied a greater variety of microhabitats that did not differ from random. Concomitantly, free-ranging cottonmouths exhibited ontogenetic shifts in diet: juveniles consumed mostly salamanders, while adults ate a greater variety of prey including other snakes and birds. Our results highlight the importance of understanding how ontogenetic changes in coloration, diet and predation risk influence foraging strategy and microhabitat selection in snakes.  相似文献   

17.
The purpose of this article is to gain insight into the ossification sequence of the palatoquadrate and the adjacent lateral cranial wall of prehatching Alligator mississippiensis, a process about which there is almost no published information. Results were obtained by studying serial histological sections of the series of ontogenetic stages and enlarged wax-plate models of several stages. The cartilage of the palatoquadrate starts to ossify endochondrally in the quadrate portion of the pars pterygoquadrata palatoquadrati in Stage 6A. In this stage, a bone, called the lamina palatoquadrati anterior here, appears at and close to the anteromedial wall of the cartilaginous pterygoid portion of the pars pterygoquadrata. The lamina palatoquadrati anterior ossifies in membrane. Later in ontogeny, the lamina palatoquadrati anterior spreads into the cavum epiptericum and sheathes the posterior portion of the trigeminal ganglion laterally. The jaw adductor muscles insert at the outer surface of the lamina palatoquadrati anterior. The lamina palatoquadrati anterior is a new structure not previously recorded in crocodylians or any other Recent reptile. The topology, mode of ossification, and functional anatomy of the lamina palatoquadrati anterior correspond to those of the membranous ossification of the alisphenoid of marsupials. Another bone, called the lamina prootici anterior here, spreads in membrane from the anterolateral wall of the prootic portion of the otic capsule into the prootic fenestra, above the trigeminal ganglion. The lamina prootici anterior represents a structure not recorded previously in crocodylians. It contributes to the orbitotemporal braincase wall.  相似文献   

18.
Ontogenetic diet patterns and trophic guild structure of a 15 species temperate lake fish assemblage were analysed over wide size intervals (up to seven orders of magnitude in body mass), representing practically the whole life span in most species. A two-step objective clustering technique supplemented with other multivariate statistical tools proved that size-related diet changes clearly played an important role in structuring trophic organization of fishes inhabiting Lake Balaton. As many as 13 out of the 15 fish species showed marked size-related dietary changes with two to four ontogenetic feeding stages. At the assemblage level, 11 trophic guilds were separated. Guild membership was size-dependent in 11 fish species that participated in two to four trophic guilds during their life span. The most complex trophic ontogeny was observed in roach Rutilus rutilus and asp Aspius aspius with four guild memberships. This study showed that trophic status of fishes may be very size-sensitive and thus a universal classification of fish species to general trophic guilds, such as 'planktivore', 'benthivore', 'piscivore' or 'herbivore', should be applied very carefully even in environmental monitoring and fisheries management applications, unless it is supported by relevant results of life span diet analyses.  相似文献   

19.
The Scutellaria is a Labiatae genus (subfamily Scutellarioideae) with a highly specialised floral structure. The genus is characterised by a peculiar two‐lobed calyx with a projecting appendage, named the scutellum. Here, we present a detailed analysis of floral development, using epi‐illumination light microscopy, to clarify open questions about its floral organisation. Floral whorls appeared in an acropetal sequence, with a marked temporal overlap of petal and stamen appearance. Organ appearance in each whorl proceeded unidirectionally from the abaxial to the adaxial side. Significant developmental features included the formation of the scutellum, reduction of sepal lobes and formation of a three‐lobed nectary disc. Our study revealed that both loss of organ initiation and fusion of primordia are responsible for the reduction in sepal members in Scutellaria. The nectary structure was markedly different from most other studied Lamiaceae.  相似文献   

20.
Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号