首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

2.
荒漠破碎化生境中长爪沙鼠集合种群野外验证研究   总被引:2,自引:0,他引:2  
近年来,人类活动和自然干扰,导致内蒙古阿拉善荒漠区生境的破碎化,出现了长爪沙鼠在不同斑块间的不连续分布,每一斑块内可能存在一个局域种群,而集合种群建立的前提条件,是局域种群斑块状分布在离散的栖息地环境中。2002~2012年每年的4~10月,在阿拉善荒漠区禁牧、轮牧、过牧和开垦4种人为不同利用方式形成的生境斑块中,采用标志重捕法对长爪沙鼠(Meriones unguiculatus)种群进行定点监测。通过分析长爪沙鼠种群动态,计算各局域种群的灭绝风险,利用Spearman秩相关系数检验种群动态的空间同步性,同时以种群周转率对长爪沙鼠扩散能力进行评估,以检验阿拉善荒漠区长爪沙鼠种群空间结构是否具有经典集合种群的功能。结果表明:(1) 不同生境斑块可被长爪沙鼠局域种群占据,11年间捕获长爪沙鼠2~7次不等;(2) 长爪沙鼠所有局域种群均具有灭绝风险,在轮牧区和禁牧区灭绝率高达1.000 0,开垦区灭绝率最低,也达到0.333 4,而本研究期间最大局域种群(2008年过牧区,26只/hm2),在2010年发生了局域灭绝;(3) 不同生境斑块间没有明显的空间隔离而阻碍局域种群的重新建立,长爪沙鼠扩散能力较强,绝大部分月份的种群周转率在50.0%以上,特别是周转率达到100.0%的月份较多;(4) 不同生境斑块间仅轮牧区和禁牧区中长爪沙鼠种群密度显著正相关(P<0.05),而其他生境斑块间相关性均不显著(P >0.05),长爪沙鼠局域种群整体显示出明显的非同步空间动态。阿拉善荒漠区长爪沙鼠种群满足作为经典集合种群物种区域续存的4个条件,具有作为研究小哺乳动物集合种群的潜在价值。  相似文献   

3.
With the interest in conservation biology shifting towards processes from patterns, and to populations from communities, the theory of metapopulation dynamics is replacing the equilibrium theory of island biogeography as the population ecology paradigm in conservation biology. The simplest models of metapopulation dynamics make predictions about the effects of habitat fragmentation - size and isolation of habitat patches - on metapopulation persistence. The simple models may be enriched by considerations of the effects of demographic and environmental stochasticity on the size and extinction probability of local populations. Environmental stochasticity affects populations at two levels: it makes local extinctions more probable, and it also decreases metapopulation persistence time by increasing the correlation of extinction events across populations. Some controversy has arisen over the significance of correlated extinctions, and how they may affect the optimal subdivision of metapopulations to maximize their persistence time.  相似文献   

4.
Extinction, colonization, and species occupancy in tidepool fishes   总被引:1,自引:0,他引:1  
Despite the increasing sophistication of ecological models with respect to the size and spatial arrangement of habitat, there is relatively little empirical documentation of how species dynamics change as a function of habitat size and the fraction of habitat occupied. In an assemblage of tidepool fishes, I used maximum-likelihood estimation to test whether models which included habitat size provided a better fit to empirical data on extinction and colonization probabilities than models that assumed constant probabilities over all habitats. I found species differences in how extinction and colonization probabilities scaled with habitat size (and hence local population size). However, there was little evidence for a relationship between extinction and colonization probabilities and the fraction of occupied tidepools, as assumed in simple metapopulation models. Instead, colonization and extinction were independent of the fraction of occupied tidepools, favoring a MacArthur-Wilson island-mainland model. When I incorporated declines in extinction probability with tidepool volume in a simple simulation model, I found that predicted occupancy could change greatly, especially when colonization was low. However, the predicted fraction of occupied patches in the simulation model changed little when I incorporated the range of values reported here for extinction and colonization and the rate at which they scale with habitat size. Quantifying extinction and colonization patterns of natural populations is fundamental to understanding how species are distributed spatially and whether metapopulation models of species occupancy provide explanatory power for field populations. Received: 14 March 1997 / Accepted: 21 September 1997  相似文献   

5.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

6.
Mistletoes are aerial hemiparasitic plants which occupy patches of favorable habitat (host trees) surrounded by unfavorable habitat and may be possibly modeled as a metapopulation. A metapopulation is defined as a subdivided population that persists due to the balance between colonization and extinction in discrete habitat patches. Our aim was to evaluate the dynamics of the mistletoe Psittacanthus robustus and its host Vochysia thyrsoidea in three Brazilian savanna areas using a metapopulation approach. We also evaluated how the differences in terms of fire occurrence affected the dynamic of those populations (two areas burned during the study and one was fire protected). We monitored the populations at six-month intervals. P. robustus population structure and dynamics met the expected criteria for a metapopulation: i) the suitable habitats for the mistletoe occur in discrete patches; (ii) local populations went extinct during the study and (iii) colonization of previously non-occupied patches occurred. The ratio of occupied patches decreased in all areas with time. Local mistletoe populations went extinct due to two different causes: patch extinction in area with no fire and fire killing in the burned areas. In a burned area, the largest decrease of occupied patch ratios occurred due to a fire event that killed the parasites without, however, killing the host trees. The greatest mortality of V. thyrsoidea occurred in the area without fire. In this area, all the dead trees supported mistletoe individuals and no mortality was observed for parasite-free trees. Because P. robustus is a fire sensitive species and V. thyrsoidea is fire tolerant, P. robustus seems to increase host mortality, but its effect is lessened by periodic burning that reduces the parasite loads.  相似文献   

7.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

8.
For two consecutive years we registered the presence (or absence) of blue winged grasshoppers (Oedipoda caerulescens; Linnaeus, 1758) on 312 habitat patches of differing size in a region of more than 3000 ha. The data show that presence of grasshoppers on a habitat patch is dependent on patch size as well as on patch isolation. We used an ecological incidence model to describe the metapopulation dynamics of the regional population and derived the parameters for this model from presence-absence data and observations of Oedipoda dispersion. The analysis shows that local extinction of grasshopper populations is influenced by strong fluctuations of environmental conditions and that for a number of small patches in our region recolonization is important for the presence of O. caerulescens. Colonization probability, as derived using the incidence model, is in good agreement with estimates from a population genetical analysis.  相似文献   

9.
Andrena hattorfiana is a rare solitary bee which has declined during the last decades throughout western Europe. It is specialised to forage pollen from plants of the family Dipsacaceae. Knowledge of distribution, dispersal propensity, and local population sizes is essential for successful conservation of A. hattorfiana. The investigated local bee populations (n = 78) were dominated by small local populations and 60% were smaller than 10 female individuals and 80% were smaller than 50 female individuals. The area of the median occupied habitat patch was 1.25 hectare and harboured 7 female bees. Mark-release-recapture studies of female A. hattorfiana revealed a sedentary behaviour. Among pollen-foraging female bees the average registered distance moved was 46 m. The patch emigration rate was about 2%, with an observed maximum colonization distance of 900 m. Only 10% of the individuals crossed areas without the pollen plant within grassland patches, such as unpaved roads, stone walls and small tree-stands, even if these areas were less than 10 m wide. This study shows that solitary bees can occur in local populations of extremely small size and they have a sedentary behaviour. These are features that usually increase the risk of local population extinction.  相似文献   

10.
Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l.) on Vaccinium uliginosum (Ericaceae) in up to nine populations in Belgium ranging in size from 80 m2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V. uliginosum, Sorbus aucuparia and Cytisus scoparius). We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when considering plant and bumble bee conservation.  相似文献   

11.
The False Ringlet (Coenonympha oedippus) is a European butterfly species, endangered due to the severe loss and fragmentation of its habitat. In Hungary, two remaining populations of the butterfly occur in lowland Purple Moorgrass meadows. We studied a metapopulation occupying twelve habitat patches in Central Hungary. Our aim was to reveal what measures of habitat quality affect population size and density of this metapopulation, estimate dispersal parameters and describe phenology of subpopulations. Local population sizes and dispersal parameters were estimated from an extensive mark–release–recapture dataset, while habitat quality was characterized by groundwater level, cover of grass tussocks, bush cover, height of vegetation and grass litter at each habitat patch. The estimated size of the metapopulation was more than 3,000 individuals. We estimated a low dispersal capacity, especially for females, indicating a very low probability of (re)colonization. Butterfly abundance and density in local populations increased with higher grass litter, lower groundwater level and larger area covered by tussocks. We suppose that these environmental factors affect butterfly abundance by determining the microclimatic conditions for both larvae and adult butterflies. Our results suggest that the long-term preservation of the studied metapopulation needs the maintenance of high quality habitat patches by appropriate mowing regime and water regulation. Management also should facilitate dispersal to strengthen metapopulation structure with creating stepping-stones or gradually increase habitat quality in present matrix.  相似文献   

12.
Species living in highly fragmented landscapes often occur as metapopulations with frequent population turnover. Turnover rate is known to depend on ecological factors, such as population size and connectivity, but it may also be influenced by the phenotypic and genotypic composition of populations. The Glanville fritillary butterfly (Melitaea cinxia) in Finland uses two host-plant species that vary in their relative abundances among distinct habitat patches (dry meadows) in a large network of approximately 1,700 patches. We found no effect of host species use on local extinction. In contrast, population establishment was strongly influenced by the match between the host species composition of an empty habitat patch and the relative host use by larvae in previous years in the habitat patches that were well connected to the target patch. This "colonization effect" could be due to spatially variable plant acceptability or resistance or to spatially variable insect oviposition preference or larval performance. We show that spatial variation in adult oviposition preference occurs at the relevant spatial scale and that the other possible causes of the colonization effect can be discounted. We conclude that the colonization effect is generated by host preference influencing the movement patterns of ovipositing females. Migrant females with dissimilar host preferences have different perceptions of relative patch quality, which influences their likelihood of colonizing patches with particular host composition.  相似文献   

13.
K. Schöps 《Oecologia》2002,132(2):256-263
This study reports a rare example where a native herbivorous insect frequently overexploits local populations of its perennial host. Local dynamics of a flightless weevil (Hadramphus spinipennis, Curculionidae) and its host plant (Aciphylla dieffenbachii, Apiaceae) were assessed for one discrete patch. In this main study site local weevil population structure, dynamics and movement were investigated using a capture-recapture study. Local plant dynamics were studied by mapping plant location, size, sex and the phenological stage of each plant. Regional weevil and plant dynamics were studied for six plant patches using line-transect counts to estimate local weevil numbers and repeated counts of the number of flowering adult plants to assess plant numbers. Dispersal was assessed by regularly searching all plant patches for marked weevils that emigrated from the main study site. Prior to extinction, local weevil abundance, survival and recruitment rates increased continuously. At the same time the feeding damage on the plants increased and the area covered by A. dieffenbachii decreased until no plants were left. An increase in weevil abundance was clearly associated with the extinction of the local host plant population. Weevils stayed in their local host plant patch whilst food was available and dispersed only after local extinction of the plant. Over a 4-year period four local population extinctions were observed. This study was too short to allow explicit conclusions to be drawn about the ratio of extinction to colonisation rates for both the weevil and the host plant populations. However, persistence of this locally unstable system appears possible only in a fragmented habitat where asynchrony in local dynamics is maintained.  相似文献   

14.
The adverse influence of habitat degradation on the survival of populations may sometimes be amplified by rapid evolution over ecological timescales. This phenomenon of "evolutionary suicide" has been described in theoretical as well as empirical studies. However, no studies have suggested that habitat improvement could possibly also trigger an evolutionary response that would result in a decline in population size. We use individual-based simulations to demonstrate the potential for such a paradoxical response. An increase in the quality, size, or stability of only a fraction of the habitat patches in a metapopulation may result in an evolutionary decline in the dispersal propensity of individuals, followed by a decrease in recolonization, a reduction in the number of patches occupied, a decline in overall population size, and even extinction. Thus, well-intended conservation efforts that ignore potential evolutionary consequences of habitat management may increase the extinction risk of populations.  相似文献   

15.
In natural as well as in cultural landscapes, disturbance and succession are responsible for the emergence and subsequent disappearance of suitable habitat patches. The dynamics of habitat patches has important consequences for the spatial structure and dynamics of regional populations. However, there are only few studies quantifying both patch dynamics and incidence of insect species in a dynamic landscape over several years. I studied the incidence and population dynamics of the leaf beetle Gonioctena olivacea in a system of dynamic patches of the host plant Scotch broom Cytisus scoparius . The incidence of the beetle was most strongly affected by patch area, whereas connectivity, patch quality, patch age, and landscape context had no or only a minor effect when analysed with logistic regression. The size of local beetle populations was highly fluctuating between the years; however, the population dynamics of the local populations was not synchronous. Adjacent patches did not show higher degrees of synchrony than patches separated by large distances. In the three years of study, local populations became extinct through demographic or environmental stochasticity and patch destruction. Each year >10% of the patches disappeared. The extinction rate of beetles in persistent patches was decreasing with increasing patch area. On the other hand, patches newly emerged and were rapidly colonized by the beetle. The colonization rate depended on patch connectivity. Obviously, Gonioctena olivacea was capable of persisting in this system with high turnover of patches owing to its high dispersal power.  相似文献   

16.
Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.  相似文献   

17.
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well‐studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat‐specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750 000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150 000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography.  相似文献   

18.
Two general approaches have usually been taken towards understanding the distributions and dynamics of localised species in heterogeneous landscapes, namely habitat characterisation and metapopulation dynamics. We show how habitat and metapopulation dynamics interact to generate a highly localised distribution of a butterfly, despite the extremely widespread nature of the butterfly’s host plant. Egg placement, macro-habitat requirements and dispersal were studied for the butterfly Erynnis tages, in North Wales, where it shows a restricted distribution relative to that of its host plant, Lotus corniculatus. Females laid eggs disproportionately on large plants growing in hollows, with intermediate cover of bare ground and high cover of L. corniculatus. Ideal macro-habitat, studied at 100-m grid resolution, consisted of areas with high host plant densities, sheltered from wind, with light or no grazing or cutting. These specialised conditions are represented as localised patches in the landscape, and define the potential habitat network, within which metapopulation dynamics take place. Although there was a moderate (22%) level of exchange of individual E. tages among local populations, the total number of potential colonists in the whole system was low because source population sizes were small (≤200 individuals at peak in any site in 1997 and 1998). Four unoccupied but apparently suitable 500-m grid squares were colonised between 1997 and 1998, and isolated habitat was less likely to be occupied. Overall, our study suggests that long-term regional persistence of E. tages is very likely to depend on metapopulation processes within the restricted patch network, rather than on the long-term survival of local populations. Received: 25 May 1999 / Accepted: 9 August 1999  相似文献   

19.
Metapopulation models are widely used to study species that occupy patchily distributed habitat, but are rarely applied to migratory species, because of the difficulty of identifying demographically independent subpopulations. Here, we extend metapopulation theory to describe the directed seasonal movement of migratory populations between two sets of habitat patches, breeding and non-breeding, with potentially different colonization and extinction rates between patch types. By extending the classic metapopulation model, we show that migratory metapopulations will persist if the product of the two colonization rates exceeds the product of extinction rates. Further, we develop a spatially realistic migratory metapopulation model and derive a landscape metric-the migratory metapopulation capacity-that determines persistence. This new extension to metapopulation theory introduces an important tool for the management and conservation of migratory species and may also be applicable to model the dynamics of two host-parasite systems.  相似文献   

20.
Habitat structure increases the persistence of many extinction‐prone resource–consumer interactions. Metapopulation theory is one of the leading approaches currently used to explain why local, ephemeral populations persist at a regional scale. Central to the metapopulation concept is the amount of dispersal occurring between patches, too much or too little can result in regional extinction. In this study, the role of dispersal on the metapopulation dynamics of an over‐exploitative host–parasitoid interaction is assessed. In the absence of the parasitoid the highly vagile bruchid, Callosobruchus maculatus, can maintain a similar population size regardless of the permeability of the inter‐patch matrix and exhibits strong negative density‐dependence. After the introduction of the parasitoid the size of the bruchid population decreases with a corresponding increase in the occurrence of empty patches. In this case, limiting the dispersal of both species decouples the interaction to a greater extent and results in larger regional bruchid populations. Given the disparity between the dispersal rates of the two species, it is proposed that the more dispersive host benefits from the reduction in landscape permeability by increasing the opportunity to colonise empty patches and rescue extinction prone populations. Associated with the introduction of the parasitoid is a shift in the strength of density‐dependence as the population moves from bottom–up towards top–down regulation. The importance of local and regional scale measurements is apparent when the role of individual patches on regional dynamics is considered. By only taking regional dynamics into account the importance of dispersal regime on local dynamics is overlooked. Similarly, when local dynamics were examined, patches were found to have different influences on regional dynamics depending on dispersal regime and patch location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号