首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A new brain endocast of Homo erectus from Hulu Cave, Tangshan, Nanjing is described and compared with a broad sample of endocasts of H. erectus, Neanderthals, and recent modern humans. The Nanjing 1 endocast is reconstructed based on two portions of endocranial casts taken from the original fossil fragments. The fossil was discovered in 1993, near Nanjing, South China and is dated to ~ 0.58-0.62 Ma. The cranial capacity is ~ 876 cc, as determined by endocast water displacement. There are some common features of Nanjing 1 and other H. erectus endocasts that differentiate them from the Neanderthals and modern humans in our sample. These include small cranial capacity, low height dimensions, simple middle meningeal vessel patterns, a high degree of cerebral-over-cerebellar lobe overhang, elongated and quite separated cerebellar lobes, and a narrow, low, short and flat frontal region. Some features are found to vary among H. erectus, Neanderthals and modern humans, such as the lateral Sylvian fissure position and the venous sinus and petalial patterns. The Nanjing 1 endocast has unique, large, superior frontal convolutions, and strongly protruding Broca's caps. In contrast to other Chinese H. erectus from Hexian and Zhoukoudian, Nanjing 1 lacks strong posterior projection of the occipital lobes. Bivariate and principal component analyses indicate that the small volume and shape of Nanjing 1 is most similar to KNM-WT 15000, KNM-ER 3883, Sangiran 2 and Hexian, illustrating the combination of narrow, low, and short frontal lobes with wide posterior lobes.  相似文献   

2.
Previous work by several researchers has suggested that the cranial sample from Zhoukoudian possesses a unique metric pattern relative to the African and Asian specimens assigned to Homo erectus. The current study readdresses this issue with an expanded fossil sample and a larger and more comprehensive set of cranial measurements. To test the patterns present in the assemblage, canonical variates analysis was performed using a covariance matrix generated from the Howells data set. From this, interindividual Mahalanobis distances were computed for the fossils. Random expectation statistics were then used to measure statistical significance of the Mahalanobis distances. The results show that the Zhoukoudian hominids exhibit a unique metric pattern not shared by the African and Indonesian crania sampled. In these tests the Hexian calvaria resembled the African and Indonesian specimens and differed significantly from the craniometric pattern seen in the Zhoukoudian fossils. The Zhoukoudian specimens are characterized by a wide midvault and relatively narrow occipital and frontal bones, while the African and Indonesian crania (including Hexian) have relatively broad frontal and occipital dimensions compared to their midvaults. These results do not suggest that a multiple-species scenario is necessary to encompass the variation present in the sample. Based on the current evidence it is more probable that this variation reflects polytypism influenced by environmental adaptation and/or genetic drift.  相似文献   

3.
In this paper, we present data on the morphological features and linear measurements for the Hexian Homo erectus and other comparative endocasts, in order to highlight variation during human brain evolution. The endocast of Hexian was reconstructed in 1982, and an endocranial volume of 1,025 ml was estimated. The geological age is about 412 ka, or roughly contemporaneous with the Zhoukoudian (ZKD) specimens. There are some differences between Hexian and the modern Chinese male endocasts in our sample, including low position of the greatest breadth, low maximum height, a well-marked and prominent frontal keel, the flat surface of the frontal lobes, prominent sagittal keel along the center frontal and parietal lobes, depressed Sylvian areas and parietal lobes superiorly, strong posterior projection of the occipital lobes, anterior position of the cerebellar lobes relative to the occipital lobes, and the relative simplicity of the meningeal vessels. Compared with the ZKD, Indonesian, and African Homo erectus specimens, Hexian has more morphological features in common with ZKD. Principal component analyses indicate that Hexian is closest to the ZKD Homo erectus compared with the modern Chinese and other Homo erectus, but its great breadth distinguishes it. Metric analyses show that the brain height, frontal breadth, cerebral height, frontal height, and parietal chord from Homo erectus to modern humans increased, while the length, breadth, frontal chord, and occipital breadth did not change substantially.  相似文献   

4.
5.
Homo erectus fossils can be divided into four zoogeographic zones that show different rates of endocranial expansion during the Pleistocene. When these are also grouped into three time levels, we find small increases from early to middle forms, and regularly greater increases from middle to late forms. These increases fit a regular pattern that also accomodates all archaic types, including Neandertals, as late subspecies ofH. erectus.  相似文献   

6.
Lower-to-upper limb-bone proportions give valuable clues to locomotor behavior in fossil taxa. However, to date only external linear dimensions have been included in such analyses of early hominins. In this study, cross-sectional measures of femoral and humeral diaphyseal strength are determined for the two most complete early Homo erectus (or ergaster) associated skeletons--the juvenile KNM-WT 15000 and the adult KNM-ER 1808. Modern comparative samples include an adult human skeletal sample representative of diverse body shapes, a human longitudinal growth series, and an adult chimpanzee sample. When compared to appropriately age-matched samples, both H. erectus specimens fall very close to modern human mean proportions and far from chimpanzee proportions (which do not overlap with those of humans). This implies very similar mechanical load-sharing between the lower and upper limbs, and by implication, similar locomotor behavior in early H. erectus and modern humans. Thus, by the earliest Pleistocene (1.7 Ma), completely modern patterns of bipedal behavior were fully established in at least one early hominin taxon.  相似文献   

7.
8.
High-precision U-series dating of Locality 1 at Zhoukoudian, China   总被引:6,自引:0,他引:6  
Thermal ionization mass spectrometric(230)Th/(234)U dating has been carried out on intercalated speleothem samples from the limestone cave occupied by Homo erectus at Zhoukoudian, China. The samples were recently collected in proper stratigraphic context after detailed field examinations. The results show that the age of the No. 5 Skull from Layer 3 is >400 ka, possibly in the range of about 400-500 ka, and that the hominid fossils from the lower strata are at least 600 ka and possibly >800 ka, much older than previously thought. The near-equilibrium(230)Th/(234)U ratios and internal consistency of the dates and stratigraphy lend credence to the results and allow us to comment on their important implications for human evolution.  相似文献   

9.
Previous studies of daily energy expenditure (DEE) in hominin fossils have estimated locomotor costs using a formula that was based on six species, all 18 kg or less in mass, including no primates, and that has a number of other problems when applied in an ecological context. It is well established that the energetic cost of human walking is lower than that of representative mammals, particularly for individuals with long lower limbs. The current study reevaluates the daily energy expenditures of a variety of hominin species using more appropriate approaches to estimating locomotor costs. To estimate DEE for primates, I relied on published data on body mass, day range, and the percentage of time spent in various activities. Based on those data, I calculated a value for nonlocomotor DEE. I then used a variant of a method that I have suggested elsewhere to calculate the daily cost due to locomotion (DEEL) and summed the two to calculate total DEE. The more up-to-date methods for calculating the cost of travel result in lower estimates of this aspect of the energy budget than seen in previous studies. Values obtained here for DEE in various representatives of Australopithecus are lower than reported previously by around 200 kcal/day. Taking into account the greater economy of human walking, particularly the effect of the longer lower limbs found in many later Homo species, also results in lowered estimates of DEE. Elongation of the lower limbs in H. erectus reduced relative travel costs nearly 50% in comparison to A.L. 288-1 (A. afarensis). The present method for calculating DEE indicates that female H. erectus DEE was 84% greater than that of female Australopithecus; this disparity is even larger than that suggested by previous workers.  相似文献   

10.
The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.  相似文献   

11.
Sangiran (Solo Basin, Central Java, Indonesia) is the singular Homo erectus fossil locale for Early Pleistocene Southeast Asia. Sangiran is the source for more than 80 specimens in deposits with 40Ar/39Ar ages of 1.51-0.9 Ma. In April 2001, we recovered a H. erectus left maxilla fragment (preserving P3- M2) from the Sangiran site of Bapang. The find spot lies at the base of the Bapang Formation type section in cemented gravelly sands traditionally called the Grenzbank Zone. Two meters above the find spot, pumice hornblende has produced an 40Ar/39Ar age of 1.51 ± 0.08 Ma. With the addition of Bpg 2001.04, Sangiran now has five H. erectus maxillae. We compare the new maxilla with homologs representing Sangiran H. erectus, Zhoukoudian H. erectus, Western H. erectus (pooled African and Georgian specimens), and Homo habilis. Greatest contrast is with the Zhoukoudian maxillae, which appear to exhibit a derived pattern of premolar-molar relationships compared to Western and Sangiran H. erectus. The dental patterns suggest distinct demic origins for the earlier H. erectus populations represented at Sangiran and the later population represented at Zhoukoudian. These two east Asian populations, separated by 5000 km and nearly 800 k.yr., may have had separate origins from different African/west Eurasian populations.  相似文献   

12.
Hominid fossils from Ngandong and Sambungmacan, Central Java, Indonesia, are considered to be the most anatomically derived and youngest representatives of Homo erectus. Nondestructive gamma-ray spectrometric dating of three of these Homo erectus skulls showed that all samples underwent uranium leaching. Nevertheless, we could establish minimum age estimates of around 40ka, with an upper age limit of around 60 to 70ka. This means that the Homo erectus of Java very likely survived the Toba eruption and may have been contemporaneous with the earliest Homo sapiens in Southeast Asia and Australasia.  相似文献   

13.
A newHomo erectus cranium was found on May 18, 1993 by Budi, a local farmer, at Sangiran. It dates from the Middle Pucangan Formation approximately 1.6–1.8 mya. The braincase is essentially complete and as is most of the face. The vault has the typicalH. erectus gable shape. There is a clear sagittal ridge beginning below the middle of the frontal squama and running to mid-parietal. Parasagittal ridges are rounded angulations halfway up the parietals, and coincide with poorly marked temporal lines. In all measurements, this skull is longer and consistently narrower than Trinil. It is chronologically and morphologically similar to the famousH. erectus skull from east Africa, KNMER-3733. Although existing much older, this new specimen is what one would expect a female counterpart to Sangiran 17 to look like.  相似文献   

14.
From a detailed analysis of published and unpublished sources, we constructed a digitized three-dimensional, stratigraphically-controlled excavation grid of Zhoukoudian Locality 1 in order to assess the spatial relationships of the excavated materials. All 15 fossil Homo erectus loci were mapped on the grid. Meter cubes were used in excavation starting in 1934, and Loci H through O, established between 1934 and 1937, were mapped to within 1 m(3)vertical and horizontal provenience. Loci A through G, established between 1921 and 1933, were excavated in the northernmost part of Locality 1 by unmapped quarrying, but their stratigraphic levels were recorded. We could localize Loci A through G on the grid system by utilizing locations of remaining walls, stratigraphic sections, excavation reports, excavation maps, and photographs. Loci contained skeletal elements of Homo erectus individuals scattered over areas of the cave floor of up to 9 m in diameter. Scoring of taphonomic damage on the Homo erectus sample, as observed on casts and originals, demonstrates that 67% of the hominid sample shows bite marks or other modifications ascribed to large mammalian carnivores, particularly the large Pleistocene cave hyena, Pachycrocuta brevirostris. Virtually all of the remaining Homo erectus skeletal assemblage shows breakage consistent with this taphonomic pattern of fragmentation. Bioturbation by digging carnivores is the most likely explanation for a fragment of Homo erectus Skull XI discovered 1 m below its other conjoined portions in Locus L. Carbon on all the Homo erectus fossils from Locus G, a circumscribed area of 1-meter diameter, earlier taken to indicate burning, cooking, and cannibalism, is here interpreted as detrital carbon deposited under water, perhaps the result of hyaenid caching behavior. Locus G records the close stratigraphic and horizontal association of stone artifacts with Homo erectus and other vertebrate skeletal elements, an association that is seen at other loci as well. Layer 4 of the excavation contains equid cranial bone previously interpreted to have been burned while fresh. We here document that Locus B Homo erectus, including Skull I, is stratigraphically associated with this evidence, but at some 10-12 m distance. Even though the presence of wood-stoked fires and hearths is not supported by geochemical results, evidence of fire at Locality 1 in the form of burned bone is confirmed. Contextual relationships of fossil skeletal elements, relationships of carnivore damage and stone tool cutmarks on bone, and evidence of the burning of fresh bone associated with Homo erectus and stone tools support a model of transient hominid scavenging aided by the use of fire at the large hyenid den that became Zhoukoudian Locality 1. Although the original excavation catalogue from Locality 1, as well as a significant number of fossils and stone artifacts, were lost during World War II, catalogue numbers on the many surviving specimens can be used to locate fossils and artifacts within the three-dimensional grid provided in this paper.  相似文献   

15.
The phylogenetic relationships of early Pleistocene Homo crania from the South African sites of Swartkrans and Sterkfontein were investigated through cladistic analyses of 99 morphological characters. The Swartkrans Member 1 specimen SK 847 and the Stw 53 cranium from Sterkfontein Member 5A were treated as separate operational taxonomic units (OTUs), distinct from the three species of early Homo-H. erectus, H. habilis, and H. rudolfensis-that are recognized from the Plio-Pleistocene deposits of East Africa. The cladistic analyses differed in the treatment of the South African OTUs (separate Swartkrans and Sterkfontein OTUs vs. a single Swartkrans+Sterkfontein OTU). PAUP 4.0 was used to construct cladograms and address hypotheses about relationships. In the analysis that treated the South African specimens as a single OTU, the position of that OTU was stable as a separate branch on the Homo clade between H. rudolfensis and [H. habilis+(H. erectus+H. sapiens)]. When SK 847 and Stw 53 were treated as separate OTUs, the majority of most parsimonious trees indicated that they were positioned in similar positions as the combined South African Homo OTU; that is, as separate branches between H. rudolfensis and [H. habilis+(H. erectus+H. sapiens)], with the Swartkrans OTU generally occupying a more derived position. The position of the Sterkfontein OTU was more stable than that of the Swartkrans OTU, which was found in several other positions among the minimum length trees. Running the analyses with only those characters preserved by SK 847 and Stw 53 resulted in similar topologies for minimum length trees, although the positions of Stw 53, SK 847, and H. habilis exchanged places in some trees. In no case was an exclusive sister relationship between either South African OTU and a particular species of Homo supported statistically. Both South African OTUs differ from H. habilis in the fewest number of cladistic characters.  相似文献   

16.
Haowen Tong 《Geobios》2007,40(2):219
The materials of Aeretesmelanopterus from the Tianyuan Cave, a Late Pleistocene site with human fossils recovered recently near Zhoukoudian, are the richest of this species ever reported in North China. Aeretesmelanopterus is an endemic species of China, its relationship with Petaurista and Trogopterus is still controversal. Studies based on the dental characters show that Aeretesmelanopterus resembles Petaurista more closely than Trogopterus. The earliest fossil record of Aeretesmelanopterus was found in South China in Middle Pleistocene deposits. The earliest records in the Beijing area are from Upper Cave and Tianyuan Cave at Zhoukoudian are of late-Late Pleistocene age, around 30 kyrs BP. The geographical distributions of this species are very limited. In evolution, Aeretesmelanopterus experienced both the increase and the decrease in tooth size; but its crown height of cheek teeth was continuously increasing.  相似文献   

17.
The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5–1.6 Ma, and assigned to the species Homo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the species Homo habilis or in the genus Australopithecus. Similarities with the genus Homo include a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability of Homo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.  相似文献   

18.
19.
20.
The morphology and affinities of early and middle Pleistocene Homo erectus in East Asia have been explored since the late nineteenth century. A fragmentary hominid cranium (Nanjing no.1) recovered in Tangshan near Nanjing, China bears directly on these issues. In the present study, the morphological features of Nanjing no.1 are described and compared with Homo erectus from both Eurasia and Africa. Our results indicate that this middle Pleistocene hominid fossil should be referred to as Homo erectus. The sharing of typical Homo erectus features with African and European counterparts demonstrates that Homo erectus is a widely distributed lineage that evolved during the million years after its Pliocene origins. The differences between Nanjing no.1 and Zhoukoudian suggest certain level of regional variation in East Asian Homo erectus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号