首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Food borne diseases are a major public health concern worldwide. Staphylococcus aureus is one of the potential food borne pathogens which causes nosocomial and community acquired infections. In the present study, 74 representative strains of S. aureus isolated and characterized in previous study from different milk samples were subjected to random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR to generate fingerprints to determine the genetic relationships of the isolated strains. A total of 20 RAPD patterns were generated and the number of amplified fragments obtained ranged from 0 to 8 with molecular weight ranging from 250 to 2000 bp. A dendrogram based on fingerprinting pattern grouped isolates into twelve major clusters (I–XII). In the case of ERIC-PCR 9 banding patterns were obtained with amplicons ranging from 1 to 8 and band sizes ranging from 250 to 2000 bp. A total of four major clusters (I–IV) were observed in the dendrogram based on ERIC fingerprints. The discrete banding patterns obtained both from ERIC-PCR and RAPD-PCR showed remarkably the genetic diversity of S. aureus. The findings of this study indicate that raw, bulk and pasteurized milk in the North-West Province was contaminated with toxigenic and multi-drug resistant S. aureus strains. This emphasizes the need to implement appropriate control measures to reduce contamination as well as the spread of virulent S. aureus strains to reduce the burden of disease in humans.  相似文献   

2.
An efficient synthesis of 29 new binaphthyl-based neutral, and mono- and di-cationic, peptoids is described. Some of these compounds had antibacterial activities with MIC values of 1.9–3.9 μg/mL against Staphylococcus aureus. One peptoid had a MIC value of 6 μg/mL against a methicillin-resistant strain of S. aureus (MRSA) and a MIC value of 2 μg/mL against vancomycin-resistant strains of enterococci (VRE).  相似文献   

3.
As part of an on-going project to isolate antibacterial compounds from rare conifer species, a new abietane diterpene, 2β-acetoxyferruginol was isolated from the stem bark of Prumnopitys andina. Molecular modelling studies were conducted to explain some of the NOEs observed in the A-ring of this compound and to support assignment of relative stereochemistry. This new compound had antibacterial activity at 8 μg/ml against two effluxing strains of Staphylococcus aureus, but interestingly was inactive at 128 μg/ml against a wild-type strain and against a methicillin-resistant (MRSA) clinical isolate. We have previously demonstrated that ferruginol is active against these four S. aureus stains and therefore the results indicate that the presence of the acetoxy group has a detrimental effect on antibacterial activity against certain strains. 2β-Acetoxyferruginol was also assayed against Propionibacterium acnes and was active at 4 μg/ml.  相似文献   

4.
Novel C(3) propenylamide and propenylsulfonamide cephalosporins have been synthesized and tested for their ability to inhibit the penicillin-binding protein 2′ (PBP2′) from Staphylococcus epidermidis and the growth of a panel of clinically relevant bacterial species, including methicillin-resistant Staphylococcus aureus (MRSA). The most potent compounds inhibited the growth of MRSA strains with minimum inhibitory concentrations (MIC) as low as 1 μg/mL. The structure–activity relationship revealed the potential for further optimization of this new cephalosporin class.  相似文献   

5.
An effective intramolecular C–H arylation reaction catalyzed by a bimetallic catalytic system Pd(OAc)2/CuI for the synthesis of fluorine-substituted carbazoles from corresponding N-phenyl-2-haloaniline derivatives under ligand free conditions is demonstrated. The established method is effective for both N-phenyl-2-bromoaniline and N-phenyl-2-chloroaniline, and requires the low loading of Pd(OAc)2 (0.5 mol %). A series of new fluorinated carbazoles were synthesized in excellent yields using the protocol (>83%, 19 examples) and were fully characterized by 1H, 13C and 19F NMR spectral data, HRMS and elemental analysis. All compounds were evaluated for their antibacterial activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and methicillin-resistant S. aureus with resistance to gentamicin) by serial dilution technique. All tested compounds showed antibacterial activity against three test strains (S. aureus, B. subtilis and MRSA), and most of these compounds displayed pronounced antimicrobial activities against these three strains with low MIC values ranging from 0.39 to 6.25 μg/mL. Among them, compounds 7 and 14 exhibited potent inhibitory activity better than reference drugs meropenem and streptomycin. Three compounds (2, 4 and 5) showed antibacterial activity against E. coli. with MIC values from 12.5 to 25 μg/mL.  相似文献   

6.
A total of 29 novel sulfenamide compounds were synthesized, spectroscopically characterized and evaluated in vitro for antimicrobial activity against various infectious pathogens. Compounds 1b and 2c exhibited potent inhibition against clinical Methicillin-resistant Staphylococcus aureus (MRSA) strains with minimum inhibitory concentration (MIC) values of 1.56 μg/mL.  相似文献   

7.
《Phytomedicine》2014,21(7):936-941
The in vitro antimicrobial activities of three 3-Benzylchroman derivatives, i.e. Brazilin (1), Brazilein (2) and Sappanone B (3) from Caesalpinia sappan L. (Leguminosae) were assayed, which mainly dealt with synergistic evaluation of aminoglycoside and other type of antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) by the three compounds through the Chequerboard and Time-kill curve methods. The results showed that Compounds 1–3 alone exhibited moderate to weak activity against methicillin-susceptible S. aureus (MSSA) and other standard strains by MICs/MBCs ranged from 32/64 to >1024/>1024 μg/ml, with the order of activity as 1 > 2 > 3. Chequerboard method showed significant anti-MRSA synergy of 1/Aminoglycosides (Gentamicin, Amikacin, Etimicin and Streptomycin) combinations with (FICIs)50 at 0.375–0.5. The combined (MICs)50 values (μg/ml) reduced from 32–128/16–64 to 4–8/4–16, respectively. The percent of reduction by MICs ranged from 50% to 87.5%, with a maximum of 93.8% (1/16 of the alone MIC). Combinations of 2 and 3 with Aminoglycosides and the other antibiotics showed less potency of synergy. The dynamic Time-killing experiment further demonstrated that the combinations of 1/aminoglycoside were synergistically bactericidal against MRSA. The anti-MRSA synergy results of the bacteriostatic (Chequerboard method) and bactericidal (time-kill method) efficiencies of 1/Aminoglycoside combinations was in good consistency, which made the resistance reversed by CLSI guidelines. We concluded that the 3-Benzylchroman derivative Brazilin (1) showed in vitro synergy of bactericidal activities against MRSA when combined with Aminoglycosides, which might be beneficial for combinatory therapy of MRSA infection.  相似文献   

8.
《Microbiological research》2014,169(12):924-930
Panton-Valentine Leukocidin (PVL) produced by community acquired methicillin Staphylococcus aureus (CA-MRSA) involved in skin and soft-tissue infections and necrotizing pneumonia comprised of two fractions, namely PVL S and PVL F. In the present study, three monoclonal antibodies designated as MAb1, MAb9 and MAb10 were generated against recombinant PVL-S (35 kDa) protein of S. aureus. All the three MAbs specifically reacted to confirm PVL-S positive strains of S. aureus recovered from clinical samples in Western blot analysis. Similarly all the three MAbs did not show any binding to other tested 14 different pathogenic bacteria belonging to other genera and species in Western blot analysis. Furthermore, a simple dot-ELISA method was standardized for the identification of PVL-S toxin containing S. aureus strains. Initially in dot-ELISA, Protein A (Spa) of S. aureus posed background noise problems due to the non-specific binding of antibodies resulting in false positive reactions. With the addition of 10 mM diethylpyrocarbonate (DEPC) along with 5% milk in PBS in the blocking step prevented this non-specific binding of Spa to mouse anti-PVL monoclonal antibodies in dot-ELISA. Once standardized, this simple dot-ELISA was evaluated with nine PVL positive strains recovered from food, environmental and clinical samples and the results were compared with PCR assay for the presence of PVL toxin genes and also with Western blot analysis. A 100% correlation was found between dot-ELISA, PCR assay and Western blot analysis. Collectively our results suggest the newly developed simple dot-ELISA system can be of immense help in providing, rapid detection of the PVL toxin containing S. aureus strains at a relatively low cost and will be a valuable tool for the reliable identification of CA-MRSA.  相似文献   

9.
Three novel series of 5-aryloxypyrazole derivatives have been synthesized and tested for their antibacterial activity. The majority of the synthesized compounds showed potent inhibitory activity against Gram-positive bacteria Staphylococcus aureus 4220, especially against the strains of multidrug-resistant clinical isolates (MRSA3167/3506 and QRSA3505/3519). Among which compounds IIIb, IIIg and IIIm showed the most potent levels of activity (MIC = 1 μg/mL) against the multidrug-resistant strains. And cytotoxic activity assay showed that the compounds tested did not affect cell viability on the Human cervical (HeLa) cells at their MICs. The current study therefore suggests that 5-aryloxypyrazoles bearing a rhodanine-3-aromatic acid moiety are promising scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

10.
IntroductionA number of plant species, including Cymbopogon schoenanthus, are traditionally used for the treatment of various diseases. C. schoenanthus is currently, traded in the Saudi markets, and thought to have medicinal value. This study aimed at investigating the biological activities of C. schoenanthus against both Gram-positive and Gram-negative bacteria and to identify its chemical ingredients.Materials and methodsThe inhibitory effects of water extracts of C. schoenanthus essential oils were evaluated against ten isolates of both Gram-positive and Gram-negative bacteria using the agar well diffusion and dilution methods. The minimum inhibitory concentration (MIC) was assayed using the Broth microdilution test on five of the ten isolates. The death rates were determined by the time kill assay, done according to the Clinical Laboratory Standards Institute (CLSI) guidelines. The chemical composition of the essential oils of the plant was performed using GC/MS.ResultsThe C. schoenanthus essential oil was effective against Escherichia coli, Staphylococcus aureus, methicillin-sensitive (MSSA) S. aureus (MRSA) and Klebsiella pneumoniae. The essential oil was not effective against Staphylococcus saprophyticus at the highest concentration applied of >150 μg/ml. The MIC values were as follows: 9.37 μg/ml for E. coli 4.69 μg/ml for S. aureus (MRSA), 2.34 mg/ml for MSSA and 2.34 μg/ml for K. pneumoniae. The time-kill assay indicated that there was a sharp time dependent decline in K. pneumoniae counts in the presence of the oil. This is in contrast to a gradual decline in the case of S. aureus under the same conditions. The eight major components of the essential oil were: piperitone (14.6%), cyclohexanemethanol (11.6%), β-elemene (11.6%), α-eudesmol (11.5%), elemol (10.8%), β-eudesmol (8.5%), 2-naphthalenemethanol (7.1%) and γ-eudesmol (4.2%).ConclusionThe results of the present study provide a scientific validation for the traditional use of C. schoenanthus as an antibacterial agent. Future work is needed to investigate and explore its application in the environmental and medical fields. In addition, to evaluating the efficacy of the individual ingredients separately to better understand the underlying mechanism.  相似文献   

11.
Herein, we describe indole-based analogues of oroidin as a novel class of 2-aminoimidazole-based inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation and, to the best of our knowledge, the first reported 2-aminoimidazole-based inhibitors of Streptococcus mutans biofilm formation. This study highlighted the indole moiety as a dibromopyrrole mimetic for obtaining inhibitors of S. aureus and S. mutans biofilm formation. The most potent compound in the series, 5-(trifluoromethoxy)indole-based analogue 4b (MBIC50 = 20 μM), emerged as a promising hit for further optimisation of novel inhibitors of S. aureus and S. mutans biofilms.  相似文献   

12.
Rhodomyrtone [6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methyl-1-oxobutyl)-9-(2-methylpropyl)-4,9-dihydro-1H-xanthene-1,3(2H)-di-one] from Rhodomyrtus tomentosa (Aiton) Hassk. displayed significant antibacterial activities against Gram-positive bacteria including Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus salivarius. Especially noteworthy was the activity against MRSA with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) ranging from 0.39 to 0.78 μg/ml. As shown for S. pyogenes, no surviving cells were detected within 5 and 6 h after treatment with the compound at 8MBC and 4MBC concentrations, respectively. Rhodomyrtone displays no bacteriolytic activity, as determined by measurement of the optical density at 620 nm. A rhodomyrtone killing test with S. mutans using phase contrast microscopy showed that this compound caused a few morphological changes as the treated cells were slightly changed in color and bigger than the control when they were killed. Taken together, the results support the view that rhodomyrtone has a strong bactericidal activity on Gram-positive bacteria, including major pathogens.  相似文献   

13.
The antimicrobial activity of several plant extracts obtained from aerial parts of two invasive plants, Hakea sericeae and Hakea salicifolia, was evaluated against both Gram-positive and Gram-negative bacteria, including resistant strains of Staphylococcus aureus and assayed at different minimum inhibitory concentrations (MIC), ranging between 3.5 and 500 μg/mL. The twigs' aqueous extract showed the strongest antimicrobial activity (MIC 7.5–62 μg/mL) against the tested methicilin and vancomycin resistant strains of S. aureus.  相似文献   

14.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created the need for better therapeutic options. In this study, five natural xanthones were extracted and purified from the fruit hull of Garcinia mangostana and their antimicrobial properties were investigated. α-Mangostin was identified as the most potent among them against Gram-positive pathogens (MIC = 0.78–1.56 μg/mL) which included two MRSA isolates. α‐Mangostin also exhibited rapid in vitro bactericidal activity (3-log reduction within 5 min). In a multistep (20 passage) resistance selection study using a MRSA isolated from the eye, no resistance against α-mangostin in the strains tested was observed. Biophysical studies using fluorescence probes for membrane potential and permeability, calcein encapsulated large unilamellar vesicles and scanning electron microscopy showed that α‐mangostin rapidly disrupted the integrity of the cytoplasmic membrane leading to loss of intracellular components in a concentration-dependent manner. Molecular dynamic simulations revealed that isoprenyl groups were important to reduce the free energy for the burial of the hydrophobic phenyl ring of α-mangostin into the lipid bilayer of the membrane resulting in membrane breakdown and increased permeability. Thus, we suggest that direct interactions of α-mangostin with the bacterial membrane are responsible for the rapid concentration-dependent membrane disruption and bactericidal action.  相似文献   

15.
Four echinomycin antibiotics were isolated from the culture broth of a marine streptomycete, and their structures were determined by a combination of chemical and spectroscopic analyses. Antibiotic activities were measured against drug-resistant and biofilm-forming strains of Staphylococcus aureus and Enterococcus faecalis. Minimum inhibitory concentrations ranging from 0.01 μM to greater than 14 μM clearly defined structure–activity relationships for antibiotic potency. Echinomycin was the most active compound with a MIC of 0.03 μM against methicillin-resistant S. aureus and 0.01 μM against biofilm-forming E. faecalis.  相似文献   

16.
A library of small aminobenzamide derivatives was synthesised to explore a cationic amphipathic motif found in marine natural antimicrobials. The most potent compound E23 displayed minimal inhibitory concentrations (MICs) of 0.5–2 μg/ml against several Gram-positive bacterial strains, including methicillin resistant Staphylococcus epidermidis (MRSE). E23 was also potent against 275 clinical isolates including Staphylococcus aureus, Enterococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and ESBL–CARBA producing multi-resistant Gram-negative bacteria. The study demonstrates how structural motifs found in marine natural antimicrobials can be a valuable source for making novel antimicrobial lead-compounds.  相似文献   

17.
We report herein the synthesis of novel 7-(4-alkoxyimino-3-aminomethyl-3-methylpiperidin-1-yl) fluoroquinolone derivatives. The antibacterial activity of the newly synthesized compounds was evaluated and correlated with their physicochemical properties. Results reveal that all of the target compounds have good potency in inhibiting the growth of Staphylococcus aureus and Staphylococcus epidermidis including MRSE (MIC: 0.125–4 μg/mL). Compounds 12, 13 are more potent than or comparable to levofloxacin against MRSA, Streptococcus pyogenes, Escherichia coli, Klebsiella pneumoniae, and Shigella sonnei. Compound 17 is more active than or comparable to levofloxacin against S. aureus including MRSA, S. epidermidis and S. pyogenes.  相似文献   

18.
The aim of the present study was to investigate the anti-biofilm activity of biologically synthesized selenium nanoparticles (Se NPs) against the biofilm produced by clinically isolated bacterial strains compared to that of selenium dioxide. Thirty strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis were isolated from various specimens of the patients hospitalized in different hospitals (Kerman, Iran). Quantification of the biofilm using microtiter plate assay method introduced 30% of S. aureus, 13% of P. aeruginosa and 17% of P. mirabilis isolates as severely adherent strains. Transmission electron micrograph (TEM) of the purified Se NPs (produced by Bacillus sp. MSh-1) showed individual and spherical nano-structure in the size range of 80–220 nm. Obtained results of the biofilm formation revealed that selenium nanoparticles inhibited the biofilm of S. aureus, P. aeruginosa, and P. mirabilis by 42%, 34.3%, and 53.4%, respectively, compared to that of the non-treated samples. Effect of temperature and pH on the biofilm formation in the presence of Se NPs and SeO2 was also evaluated.  相似文献   

19.
Antibiotic resistance is a worldwide problem that needs to be addressed. Staphylococcus aureus is one of the dangerous “ESKAPE” pathogens that rapidly evolve and evade many current FDA-approved antibiotics. Thus, there is an urgent need for new anti-MRSA compounds. Ebselen (also known as 2-phenyl-1,2-benzisoselenazol-3(2H)-one) has shown promising activity in clinical trials for cerebral ischemia, bipolar disorder, and noise-induced hearing loss. Recently, there has been a renewed interest in exploring the antibacterial properties of ebselen. In this study, we synthesized an ebselen-inspired library of 33 compounds where the selenium atom has been replaced by sulfur (ebsulfur derivatives) and evaluated them against a panel of drug-sensitive and drug-resistant S. aureus and non-S. aureus strains. Within our library, we identified three outstanding analogues with potent activity against all S. aureus strains tested (MIC values mostly ⩽2 μg/mL), and numerous additional ones with overall very good to good antibacterial activity (1–7.8 μg/mL). We also characterized the time-kill analysis, anti-biofilm ability, hemolytic activity, mammalian cytotoxicity, membrane-disruption ability, and reactive oxygen species (ROS) production of some of these analogues.  相似文献   

20.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号